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Abstract

We propose a generalisation of the notion of associated bundles to a principal bundle constructed via group
action cocycles rather than representations of the structure group. We devise a notion of connection generalising
Ehresmann connection on principal bundles, giving rise to the appropriate covariant derivative on sections of
these twisted associated bundles (and on twisted tensorial forms). We study the action of the group of vertical
automorphisms on the objects introduced (active gauge transformations). We also provide the gluing properties
of the local representatives (passive gauge transformations). The latter are generalised gauge fields: They satisfy
the gauge principle of physics, but are of a different geometric nature than standard Yang-Mills fields. We also
examine the conditions under which this new geometry coexists and mixes with the standard one. We show that
(standard) conformal tractors and Penrose’s twistors can be seen as simple instances of this general picture. We
also indicate that the twisted geometry arises naturally in the definition and study of anomalies in quantum gauge
field theory.
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1 Introduction

Classical gauge field theory is founded on the differential geometry of connections on fibered spaces: Ehresmann
(principal) connections underlies Yang-Mills type theories, relevant for particle physics, while Cartan connections
are the foundation for gauge theories of gravitation. Since Wigner, it is admitted that given a symmetry (either
spatio-temporal of internal) identified as a Lie group H, different kinds of (fundamental) particles correspond to
different (irreducible) representations (ρ,V) of H. But particles are actually manifestations of (quantized) fields.
So, one considers a principal bundle P(M,H) over spacetimeM, to which are associated - for each representation
- bundles E whose sections s : M → E ∈ Γ(E) describe matter fields of different kinds (to be further quantized).
Ehresmann connections on P give Yang-Mills potentials on M and induce covariant differentiation on Γ(E) that
represents the minimal coupling of matter fields to gauge interactions. Similarly, Cartan connections on P give
gravitational potentials onM, and in many interesting cases also induce covariant differentiation representing the
coupling of matter fields to gravity.

A gauge field theory is specified by choosing a Lagrangian. This choice is constrained by a list of desiderata
that might be long and in part guided by empirical data. But at the top of the list is that the Lagrangian should
satisfy the gauge principle: it must be invariant (or quasi-invariant) under local (point dependent) transformations
of the field variables. These gauge transformations are induced by the group of vertical automorphisms of the
underlying principal bundle Autv(P), which is a normal subgroup of its group of automorphisms Aut(P), itself the
subgroup of Diff(P) that preserve the fibration structure and projects as diffeomorphisms of spacetime. We have the
short exact sequence, Autv(P)

ι
−→ Aut(P)

π
−→ Diff(M). The gauge principle should then be understood as a direct,

though abstract, extension of the principle of general covariance at the heart of General Relativity (GR), and the
requirement of gauge invariance as a rather natural generalisation of the requirement of diffeomorphism invariance.
Our most successful theories of fundamental physics, from GR to the Standard Model (SM), are gauge field theories
of this kind.

Various generalisations, some far reaching, of the above differential geometric framework with their associ-
ated notions of connection have been proposed, sometimes with physical motivations, often with relevant physical
applications. The rise to popularity of supersymmetry and supergravity e.g. inspired the study of differential super-
geometry, super-bundles and super-connections [1]. The development of derivation-based noncommutative geome-
try (NCG) opened the possibility to give a geometrico-algebraic interpretation to the potential of the the scalar field
in the electroweak model when the latter is unified with the gauge potential in a noncommutative connection [2; 3].
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The same feat is made possible by defining a special class of connections on Lie algebroids [4; 5], a framework
presenting the advantage of being closer to standard differential geometry now familiar to most. Famously, NCG à
la Connes - using spectral triplets/actions - has ambitions matching its abstraction since it was advocated as having
the ressources to explain in a unified way various features of the SM as well as naturally incorporating GR with it
[6–8]. See [9] for a short review on formulations of gauge theories, and [10] for application of NGC in physics.

Here we put forward what we believe is an original generalisation of connections on principal bundles. The
main new ingredient is a cocycle for the action of the structure group H on P, from which a new notion of twisted
associated bundles is defined. A corresponding notion of connection on P is needed, that generalises Ehresmann’s
and induces a good notion of covariant differentiation on sections of these twisted bundles, and more generally
on the space of twisted tensorial forms - whose subspace of degree 0 is isomorphic with the space of twisted
sections. We develop this picture in extensive computational details. The expert differential geometer might find
this repetitive, but we believe it benefits the broader potential readership.

We also take care to verify that the construction is well-behaved under bundle morphisms (the construction
is functorial), which means in particular that there is a well-behaved right action of Autv(P) on the new objects,
defining their active gauge transformations. The local picture onM is also detailed, where the local representatives
of the above global objects are seen as generalised - or twisted - gauge fields. Indeed, they provide the means to
naturally implement the gauge principle, while being of a different geometric nature than Yang-Mills fields.

The conditions necessary for the above twisted geometry to coexist with the standard one are examined, and
we provide the complete explicit treatment of this mixed geometry. In particular, mixed gauge fields appear in the
local picture. The building of twisted/mixed gauge theories is then briefly sketched. We also attempt to identify a
subclass of twisted/mixed connections that seems to be a reasonable generalisation of Cartan connections.

Our proposal is conservative, but it has relevant contacts with the literature both in mathematics and physics.
We indeed indicate how conformal tractors and Penrose’ local twistors can be seen as simple - and in a precise
sense, degenerate - examples of the general framework to be developed here. As an aside, conformal gravity is
shown to be an instance of mixed gauge theory hiding in plain sight. Finally, we point out that the twisted geometry
we advocate appears naturally in the study of anomalies in quantum gauge field theory.

2 Twisted functions and twisted associated vector bundles

Given P a H-principal fiber bundle and G a Lie group, consider the smooth map:

C : P × H → G

(p, h) 7→ Cp(h), s.t Cp(hh′) = Cp(h) Cph(h′). (1)

This is known as a group action cocycle [11] (see also the mathematical literature concerned with abstract ergodic
theory [12; 13]). From the very definition follows:

Cp(h′) = Cp(e) Cp(h′) → Cp(e) = e′.

Cp(h) = Cp(h) Cph(e) → Cph(e) = e′.

Cp
(
hh−1) = Cp(e) = e′ = Cp(h) Cph

(
h−1) → Cp(h)−1 = Cph

(
h−1).

Cp
(
h−1h

)
= e′ = Cp(h−1) Cph−1(h) → Cp

(
h−1) = Cph−1(h)−1.

(2)

Notice that the defining relation 1 can be seen as an equivariance relation on P,

Cph(h′) = Cp(h)−1Cp(hh′), or R∗hC(h′) = C(h)−1C(hh′). (3)

The differential of this map is, dC|(p,h) = dC(h)|p + dCp|h : TpP ⊕ ThH → TCp(h)G, where ker dC(h)|p = ThH
and ker dCp|h = TpP, with by definition:

dC(h)|p(Xp) = d
dtCφt (h)|t=0, φt the flow of X ∈ Γ(TP) and φt=0 = p,

dCp|h(Yh) = d
dtCp(ϕt)|t=0, ϕt the flow of Y ∈ Γ(T H) and ϕt=0 = h.

Notice that Cp(h)−1dC|(p,h) : TpP ⊕ ThH → Te′G = LieG.
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2.1 Twisted functions

Given a representation (ρ,V) of G, define the space Ω0
eq
(
P,C(H)

)
of V-valued C-twisted equivariant smooth func-

tions on P as:

ϕ : P → V s.t R∗hϕ = ρ
[
C(h)−1

]
ϕ. (4)

p 7→ ϕ(p).

This is a well behaved space under the right action of H on P since on the one hand ϕ(phh′) = ρ
[
Cp(hh′)−1

]
ϕ(p),

and on the other hand:

ϕ(phh′) = ρ
[
Cph(h′)−1

]
ϕ(ph) = ρ

[
Cph(h′)−1

]
ρ
[
Cp(h)−1

]
ϕ(p)

= ρ
[
Cph(h′)−1Cp(h)−1

]
ϕ(p) = ρ

[(
Cp(h)Cph(h′)

)−1
]
ϕ(p) = ρ

[
Cp(hh′)−1

]
ϕ(p).

2.2 Twisted associated vector bundles

We generalise the usual construction of associated bundles to P(M,H) via representations of the structure group
H. Define a right H-action on P × V by,

(P × V) × H → P × V(
(p, v), h

)
7→

(
ph, ρ

[
Cp(h)−1]v)

This is well defined since we have on the one hand ((p, v), hh′) 7→
(
phh′, ρ

[
Cp(hh′)−1

]
v
)
, and on the other hand

we find
((

ph, ρ
[
Cp(h)−1

]
v
)
, h′

)
7→

(
(ph)h′, ρ

[
Cph(h′)−1

] (
ρ
[
Cp(h)−1

]
v
))

=

(
phh′, ρ

[(
Cp(h)Cph(h′)

)−1
]

v
)
. Declare

equivalent the paires in P × H that are related by this right action, note ∼ the equivalence relation, and [p, v] the
equivalence class of (p, v). We have then the C-twisted associated bundle EC = P ×ρ(C) V B P × V /∼. Denoting
Γ
(
EC)

the space of sections of the C-twisted associated bundle, as in the usual case we have the isomorphism
Γ
(
EC)
' Ω0

eq
(
P,C(H)

)
.

The question then arise as to find natural differential operators on Γ
(
EC)

' Ω0
eq
(
P,C(H)

)
, and in particular a

good notion of covariant differentiation. This requires the appropriate notion of connection.

3 Twisted connection and covariant differentiation

3.1 Vertical vector fields

The space Γ(TP) of vector fields on P is a subalgebra of the derivations of smooth functions on P, Ω0(P). The
right action of H on P gives the canonical space of vertical vector fields Γ(VP), that naturally act on any equivariant
function of P. In particular, for Xv ∈ Γ(VP), X ∈ LieH, and ϕ ∈ Ω0

eq
(
P,C(H)

)
we have:

(
Xvϕ

)
(p) = d

dτϕ
(
peτX

) ∣∣∣
τ=0 = d

dτ ρ
[
Cp

(
eτX

)−1
]
ϕ(p)

∣∣∣
τ=0 = − d

dτ ρ
[
Cp

(
eτX

)]
ϕ(p)

∣∣∣
τ=0 = −ρ∗

[
d
dτCp

(
eτX

) ∣∣∣
τ=0

]
ϕ(p).

Where ρ∗ is the induced representation of LieG. The relation Xv(ϕ) = −ρ∗
[

d
dτC

(
eτX

) ∣∣∣
τ=0

]
ϕ, is nothing but the

infinitesimal C-equivariance of ϕ, eq (4).

For later use, we also derive an identity flowing from the action of [Xv,Yv] and [X,Y]v on ϕ. First, we simply
have [X,Y]vϕ = −ρ∗

[
d
dtCp

(
et[X,Y]

) ∣∣∣
t=0

]
ϕ. Then,(

Xv(Yvϕ)
)

(p) =
(
−Xv d

dτ ρ
[
C

(
eτY

)] ∣∣∣
τ=0ϕ

)
(p) = − d

dσ
d
dτ ρ

[
CpeσX

(
eτY

)]
ϕ
(
peσX

) ∣∣∣
τ=0, σ=0 ,

= − d
dσ

d
dτ ρ

[
Cp

(
eσX

)−1
Cp

(
eσXeτY

)]
ρ
[
Cp

(
eσX

)−1
] ∣∣∣
τ=0, σ=0 ϕ(p) ,

= − d
dσ ρ

[
Cp

(
eσX

)−1
]

d
dτ ρ

[
Cp

(
eσXeτY

)] ∣∣∣
τ=0 ρ

[
Cp

(
eσX

)−1
] ∣∣∣
σ=0 ϕ(p) ,
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=

(
− d

dσ ρ
[
Cp

(
eσX

)−1
] ∣∣∣
σ=0

d
dτ ρ

[
Cp

(
eτY

)] ∣∣∣
τ=0 −

d
dσ

d
dτ ρ

[
C

(
eσXeτY

)] ∣∣∣
σ=0 τ=0

− d
dτ ρ

[
Cp

(
eτY

)] ∣∣∣
τ=0

d
dσ ρ

[
Cp

(
eσX

)−1
] ∣∣∣
σ=0

)
ϕ(p).

By the same process(
Yv(Xvϕ)

)
(p) =

(
− d

dτ ρ
[
Cp

(
eτY

)−1
] ∣∣∣
τ=0

d
dσ ρ

[
Cp

(
eσX

)] ∣∣∣
σ=0 −

d
dτ

d
dσ ρ

[
C

(
eτYeσX

)] ∣∣∣
σ=0 τ=0

− d
dσ ρ

[
Cp

(
eσX

)] ∣∣∣
σ=0

d
dτ ρ

[
Cp

(
eτY

)−1
] ∣∣∣
τ=0

)
ϕ(p).

Combining the two results, and since [X,Y]v = [Xv,Yv], we obtain the identity,

[X,Y]v ϕ(p) =
[
Xv,Yv]ϕ(p) ⇒ d

dtCp
(
et[X,Y]

) ∣∣∣
t=0 = d

dσ
d
dτ

(
Cp

(
eσXeτY

)
−Cp

(
eτYeσX

)) ∣∣∣
σ=0, τ=0. (5)

3.2 Connection

In the usual case, a covariant derivative on sections Γ(E) ' Ω0
eq(P,V) of a bundle E associated to P is obtained

through the definition of an horizontal distribution HP that complements the canonical vertical distribution VP
on P, so that ∀p ∈ P, TpP = VpP ⊕ HpP and Rh∗HpP = HphP. This is Ehresmann’s far reaching notion of
a connection. Most often, such an horizontal distribution is defined as the kernel of a connection 1-form ω ∈

Ω1(P,LieH) (∀p ∈ P,HpP := kerωp) satisfying the algebraic axioms - equivalent to the previous geometric
axioms: ωp(Xv

p) = X, for X ∈ LieH, and R∗hωph = Adh−1ωp. The covariant derivative of a section ϕ ∈ Ω0
eq(P,V)

along an horizontal vector field Xh ∈ Γ(HP) is then Xhϕ, and satisfies R∗hXhϕ = ρ(h−1)Xhϕ , so that Xhϕ ∈ Ω0
eq(P,V).

The curvature of the connection form is defined as Ω(X,Y) := dω(Xh,Yh), for X,Y ∈ Γ(TP). It is clearly a
tensorial 2-form (Ad-equivariant and horizontal): Ω ∈ Ω2

tens(P,Ad). It also happens to satisfy Cartan’s structure
equation: Ω = dω + 1

2 [ω,ω]. The curvature is the motivating example for defining the exterior covariant derivative
on equivariant forms, D : Ω•eq(P, ρ) → Ω•tens(P, ρ). Denoting the horizontal projection by |h : Γ(TP) → Γ(HP),
one indeed defines D := d ◦ |h, so that on the one hand Ω = Dω, and on the other hand Xhϕ = Dϕ(X). The exterior
covariant derivative thus generalises the covariant derivative of sections. It happens that on tensorial forms, it can
be expressed in terms of the connection 1-form : Dα = dα + ρ∗(ω)α, for α ∈ Ω•tens(P, ρ).

It turns out that to define a notion of covariant differentiation on sections of C-twisted associated bundles - or
C-twisted equivariant functions - it is unnecessary to define an horizontal distribution. All that is required is the
appropriate notion of connection 1-form.

Let us propose a LieG-valued 1-form ω ∈ Ω1(P, LieG) satisfying:

ωp(Xv
p) = d

dτCp
(
eτX

) ∣∣∣
τ=0 = dCp|e(X), for Xv

p ∈ VpP generated by X ∈ LieH. (I)

Given that R∗hXv
p = d

dτ peτXh
∣∣∣
τ=0 = d

dτ phh−1eτXh
∣∣∣
τ=0 = d

dτ pheτh−1Xh
∣∣∣
τ=0 =:

(
Adh−1 X

)v
ph, we deduce the equivariance

of ω on VP :(
R∗hωph

) (
Xv

p

)
= ωph

(
Rh∗Xv

p

)
= ωph

((
Adh−1 X

)v
ph

)
= d

dτCph
(
eτAdh−1 X

) ∣∣∣
τ=0 = d

dτCph
(
h−1eτXh

) ∣∣∣
τ=0 ,

= d
dτCph

(
h−1

)
Cp

(
eτXh

) ∣∣∣
τ=0 = Cp (h)−1 d

dτCp
(
eτX

)
CpeτX (h)

∣∣∣
τ=0 ,

= Cp (h)−1
(

d
dτCp

(
eτX

) ∣∣∣
τ=0︸            ︷︷            ︸

ωp(Xv
p)

Cp (h) + d
dτCpeτX (h)︸      ︷︷      ︸
(XvC(h))(p)

)
,

=
(
Cp (h)−1 ωp Cp(h) + Cp (h)−1 dC(h)|p

) (
Xv

p

)
,

We extend this result by requiring that it holds on the full tangent bundle of P, i.e. ω has prescribed equivariance:

R∗hωph = Cp (h)−1 ωp Cp(h) + Cp (h)−1 dC(h)|p. (II)
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This prescription is well-behaved with respect to (w.r.t) the right action of H on P. Indeed, for h, h′ ∈ H we
have the composition of pullbacks R∗h′ ◦ R∗h = (Rh ◦ Rh′)∗ = R∗h′h. So that on the one hand R∗h′

(
R∗hω

)
= R∗h′hω =

C(h′h)−1ωC(h′h) + C(h′h)−1dC(h′h). On the other hand, a direct computation using (3) gives:

R∗h′
(
R∗hω

)
= R∗h′

(
C(h)−1ωC(h) + C(h)−1dC(h)

)
,

= C(h′h)−1C(h′)
(
C(h′)−1ωC(h′) + C(h′)−1dC(h′)

)
C(h′)−1C(h′h) + C(h′h)−1C(h′) d

(
C(h′)−1C(h′h)

)
,

= C(h′h)−1ωC(h′h) + C(h′h)−1dC(h′) ·C(h′)−1C(h′h) + C(h′h)−1C(h′) dC(h′)−1 ·C(h′h) + C(h′h)−1dC(h′h),

= C(h′h)−1ωC(h′h) + C(h′h)−1dC(h′h) = R∗h′hω.

The axioms (I) and (II) define our notion of twisted connection. Let us denote C(P)T the space of these connections.

For later use, and because it is a result in its own right, we here give the infinitesimal version of the equivariance
law (II) of ω. Given Xv ∈ Γ(VP), we have:

(LXvω)p := d
dτR∗eτXωpeτX

∣∣∣
τ=0 = d

dτ

(
Cp

(
eτX

)−1
ωp Cp

(
eτX

)
+ Cp

(
eτX

)−1
dC

(
eτX

)
p

) ∣∣∣
τ=0 ,

= − d
dτCp

(
eτX

) ∣∣∣
τ=0︸            ︷︷            ︸

dCp|e(X))

ωp + ωp
d
dτCp

(
eτX

) ∣∣∣
τ=0 −

d
dτCp

(
eτX

) ∣∣∣
τ=0 dC(e)p︸ ︷︷ ︸

=0

+ d
(

d
dτCp

(
eτX

) ∣∣∣
τ=0

)
,

LXvω = d
(
dC|e(X)

)
+

[
ω, dC|e(X)

]
. (II.b)

3.3 Covariant differentiation

Consider the space of C-equivariant differential forms Ω•eq
(
P,C(H)

)
:=

{
α ∈ Ω•(P,V) |R∗hαph = ρ

[
Cp (h)−1

]
αp

}
.

The infinitesimal version of this equivariance property is given by the Lie derivative along a vertical vector field:

LXvα = d
dτR∗eτXα

∣∣∣
τ=0 = d

dτρ
[
C

(
eτX

)−1
]
α
∣∣∣
τ=0 = −ρ∗

[
d
dτC

(
eτX

) ∣∣∣
τ=0

]
α. (6)

Elements of the subspace of tensorial C-equivariant forms Ω•tens
(
P,C(H)

)
further satisfies α(Xv,Y, . . .) = 0 for

Xv ∈ Γ(VP). Sections of a C-twisted associated bundles are also C-tensorial 0-forms, ϕ ∈ Ω0
tens

(
P,C(H)

)
=

Ω0
eq
(
P,C(H)

)
.

Proposition 1. The exterior covariant derivative defined as D := d +ρ∗(ω) preserves both Ωeq
(
P,C(H)

)
and

Ωtens
(
P,C(H)

)
.

Proof. First, we show that D : Ω•eq
(
P,C(H)

)
→ Ω•eq

(
P,C(H)

)
. For α ∈ Ω•eq

(
P,C(H)

)
:

R∗hDα = dR∗hα + ρ∗
(
R∗hω

)
R∗hα,

= dρ
[
Cp(h)−1

]
· α + ρ

[
Cp(h)−1

]
dα + ρ∗

(
C(h)−1ωC(h) + C(h)−1dC(h)

)
ρ
[
C(h)−1

]
α,

= ρ
[
C(h)−1

] (
dα + ρ∗(ω)α

)
= ρ

[
C(h)−1

]
Dα.

So indeed Dα ∈ Ω•eq
(
P,C(H)

)
. Here we used the second defining property (II) of ω.

Then we show that D : Ω•tens
(
P,C(H)

)
→ Ω•tens

(
P,C(H)

)
. It is enough to prove it for α ∈ Ω1

tens
(
P,C(H)

)
:

Dα(Xv,Y) = (dα + ρ∗(ω)α) (Xv,Y),

= dα(Xv,Y)︸     ︷︷     ︸
(LXvα)(Y)

+ρ∗(ω(Xv))α(Y) − ρ∗(ω(Y))α(Xv)︸︷︷︸
=0

,

= −ρ∗
[

d
dτC

(
eτX

) ∣∣∣
τ=0

]
α(Y) + ρ∗

[
d
dτC

(
eτX

) ∣∣∣
τ=0

]
α(Y) = 0.

We used Cartan’s magic formula LX = iXd + diX and the first defining property (I) of ω. �

This operator provide the adequate notion of covariant differentiation on Γ
(
EC)
' Ω0

tens
(
P,C(H)

)
. Indeed for

any section ϕ, its covariant derivative is Dϕ = dϕ + ρ∗(ω)ϕ ∈ Ω1
tens

(
P,C(H)

)
.
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3.4 Curvature

The curvature 2-form of the twisted connection is defined via Cartan’s structure equation: Ω := dω + 1
2 [ω,ω]. It

then identically satisfies the Bianchi identity: dΩ + [ω,Ω] = 0.

Proposition 2. The curvature is a C-tensorial 2-form, Ω ∈ Ω2
tens

(
P,C(H)

)
.

Proof. We begin by proving, using (II), that Ω ∈ Ω2
eq
(
P,C(H)

)
:

R∗hΩ = dR∗hω + 1
2 [R∗hω,R

∗
hω],

= d
(
C(h)−1ωC(h) + C(h)−1dC(h)

)
+ 1

2

[
C(h)−1ωC(h) + C(h)−1dC(h),C(h)−1ωC(h) + C(h)−1dC(h)

]
,

= dC(h)−1ωC(h) + C(h)−1dωC(h) −C(h)−1ωdC(h) + dC(h)−1dC(h)

+ 1
2C(h)−1[ω,ω]C(h) + [C(h)−1ωC(h),C(h)−1dC(h)] + 1

2 [C(h)−1dC(h),C(h)−1dC(h)],

= C(h)−1
(
dω + 1

2 [ω,ω]
)
C(h),

= C(h)−1Ω C(h).

The curvature Ω of the twisted connectionω is thus an AdC(H)-equivariant 2-form. Then we prove that Ω is tensorial.
Firstly:

Ω(Xv,Yv) = dω(Xv,Yv) + [ω(Xv), ω(Yv)],

= Xv · ω(Yv) − Yv · ω(Xv) − ω([Xv,Yv]) + [ω(Xv), ω(Yv)].

Now, using (I):

Xv · ω(Yv) = Xv
(

d
dτCp

(
eτY

) ∣∣∣
τ=0

)
= d

dσ
d
dτCpeσX

(
eτY

) ∣∣∣
τ=0, σ=0 = d

dσ
d
dτCp

(
eσX

)−1
Cp

(
eσXeτY

) ∣∣∣
τ=0, σ=0,

= d
dσ

(
Cp

(
eσX

)−1 d
dτCp

(
eσXeτY

) ∣∣∣
τ=0

) ∣∣∣
σ=0,

= − d
dσCp

(
eσX

) ∣∣∣
σ=0

d
dτCp

(
eτY

) ∣∣∣
τ=0 + d

dσ
d
dτCp

(
eσXeτY

) ∣∣∣
τ=0, σ=0

Idem: −Yv · ω(Xv) = d
dτCp

(
eτY

) ∣∣∣
τ=0

d
dσCp

(
eσX

) ∣∣∣
σ=0 −

d
dτ

d
dσCp

(
eτYeσX

) ∣∣∣
τ=0, σ=0. But then we have,

−ω([Xv,Yv]) = −ω([X,Y]v) = − d
dtCp

(
et[X,Y]

) ∣∣∣
t=0

and [ω(Xv), ω(Yv)] =
[

d
dσCp

(
eσX

) ∣∣∣
σ=0,

d
dτCp

(
eτY

) ∣∣∣
τ=0

]
.

Finally, by using the identity (5) we see by inspection that Ω(Xv,Yv) = 0. Secondly:

Ω(Xv,Y) = Xv · ω(Y) − Y · ω(Xv) − ω([Xv,Y]) + [ω(Xv), ω(Y)],

= Xv · ω(Y) − ω([Xv,Y]) −
(
dω(Xv) + [ω,ω(Xv)]

)
(Y).

Now,

(LXvω) (Y) =
(
(iXvd + diXv)ω

)
(Y) = dω(Xv,Y) + d(ω(Xv))(Y),

= Xv · ω(Y) − Y · ω(Xv) − ω([Xv,Y]) + Y · ω(Xv) = Xv · ω(Y) − ω([Xv,Y]).

But also, by (II.b) LXvω = dω(Xv) + [ω,ω(Xv)]. So, by inspection we have that Ω(Xv,Y) = 0. Which finishes to
demonstrate that Ω ∈ Ω2

tens
(
P,C(H)

)
. �

This fact then allows to see that the Bianchi identity can be written as DΩ = 0. It is by the way easy to show
that, as usual, D2α = DDα = ρ∗(Ω)α.

7



4 Functoriality

In this section we check that the twisted objects defined above enjoy the same functoriality as standard constructions,
i.e. that principal bundle morphisms induce morphisms of associated twisted bundles, and of spaces of twisted
connections and twisted equivariant forms. Of particular interest is the special case of vertical automorphisms of a
principal bundle, giving rise to (active) gauge transformations.

4.1 Naturality under bundle morphisms

Consider a H-bundle (iso)morphism φ : P → P′, with φ(ph) = φ(p)h, which induces a smooth map (diffeomor-
phism) φ̄ : M → M′. Given C′ : P′ × H → G, a H-cocycle on P′, C := φ∗C′ : P × H → G is a H-cocycle on P.
Indeed, Cp(h) := C′φ(p)(h), so Cp(hh′) = C′φ(p)(hh′) = C′φ(p)(h)C′φ(p)h(h′) = C′φ(p)(h)C′φ(ph)(h

′) =: Cp(h)Cph(h′).
So, H-bundle morphisms induce morphisms of twisted bundles in the following way (we omit the representation

ρ for simplicity):

φ̃ : EC → E′C
′

,

[p, v] 7→ φ̃([p, v]) := [φ(p), v],

[ph,Cp(h)−1v] 7→ φ̃([ph,Cp(h)−1v]) := [φ(ph),Cp(h)−1v] =: [φ(p)h,C′φ(p)(h)−1v].

Naturally this implies the existence of a morphism of spaces of sections. Indeed, given ϕ′ ∈ Ω0
eq(P′,C′(H)), a

twisted function onP′ such that R∗hϕ
′ = C′(h)−1ϕ′, the map ϕ := φ∗ϕ′ is such that ϕ(ph) := ϕ′(φ(ph)) = ϕ′(φ(p)h) =

C′φ(p)(h)−1ϕ′(φ(p)) =: Cp(h)−1ϕ(p). We thus have the morphism φ∗ : Ω0
eq(P′,C′(H)) → Ω0

eq(P,C(H)), which, by

the isomorphism mentioned in section 2.2, induces the morphism φ̃∗ : Γ(E′C
′

)→ Γ(EC).
More generally, φ induces a morphism of spaces of C-equivariant forms, φ∗ : Ω•eq(P′,C′(H)) → Ω•eq(P,C(H)).

Indeed, given α′ ∈ Ω•eq(P′,C′(H)) and Rh ◦ φ = φ ◦ Rh, the form α := φ∗α′ is such that (still omitting ρ) R∗hα :=
R∗hφ

∗α′ = φ∗R∗hα
′ = φ∗

(
C′(h)−1α′

)
= φ∗C′(h)−1φ∗α′ =: C(h)−1α. So, α ∈ Ω•eq(P,C(H)). Also, since for Xv

p ∈ VpP

we have φ∗Xv
p = Xv

φ(p) ∈ Vφ(p)P
′, pullback by φ preserves horizontality and the above morphism restricts to the

spaces of C-tensorial forms, φ∗ : Ω•tens(P
′,C′(H))→ Ω•tens(P,C(H)).

One can further show that there are induced morphisms of spaces of twisted connections φ∗ : C(P′)T → C(P)T .
If P′ is endowed with a twisted connection ω′ ∈ C(P′)T , which therefore satisfies, for q ∈ P′, ω′q(Xv

q) = dCq|e(X),
X ∈ LieH, and R∗hω

′
qh = C′q(h)−1ω′qC′q(h) + C′q(h)−1dC′(h)|q, then ω := φ∗ω′ satisfies on the one hand,

ωp(Xv
p) := φ∗ω′φ(p)(X

v
p) = ω′φ(p)(φ∗X

v
p) = ω′φ(p)(X

v
φ(p)) = dC′φ(p)|e(X) =: dCp|e(X),

and on the other hand, for Xp ∈ TpP,

R∗hωph(Xp) = ωph(Rh∗Xp) := φ∗ω′φ(ph)(Rh∗Xp) = ω′φ(p)h(φ∗Rh∗Xp) = ω′φ(p)h(Rh∗φ∗Xp) = R∗hω
′
φ(p)h(φ∗Xp),

=
(
C′φ(p)(h)−1ω′φ(p)C

′
φ(p)(h) + C′φ(p)(h)−1dC′(h)|φ(p)

)
(φ∗Xp),

=: Cp(h)−1φ∗ω′φ(p)(Xp) Cp(h) + Cp(h)−1d(C′(h) ◦ φ)|p(Xp),

=
(
Cp(h)−1ωp Cp(h) + Cp(h)−1dC(h)|p

)
(Xp).

It is then a twisted connection on P, ω ∈ C(P)T .
From the above we obtain readily that a covariant derivative D′ = d + ρ∗(ω′) on P′ pulls-back as a covariant

derivative D := φ∗D′ on P. In particular it means that H-bundle morphisms φ induce morphisms of twisted
associated bundles equiped with covariant derivatives, φ̃ : (EC ,D)→ (E′C

′

,D′).

IfM =M′ and φ̄ = idM, then φ is a bundle equivalence, and we have established equivalence of the associated
twisted structures. The above functoriality holds also in the special case P = P′ with φ ∈ Aut(P) covering
φ̄ ∈ Diff(M), and therefore in the case φ ∈ Autv(P) covering φ̄ = idM. The latter is of particular interest for
physical application to gauge theories.
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4.2 Action of vertical automorphisms and gauge transformations

The group of vertical automorphisms of the principal bundle P is a subgroup of its group of diffeomorphisms,

Autv(P) :=
{
Φ ∈ Diff(P) |Φ(ph) = Φ(p)h for h ∈ H, and π ◦ Φ = π

}
. It acts on itself by composition of maps.

The gauge group is defined as H :=
{
γ : P → H |R∗hγ = h−1γh

}
. Both group are isomorphic by the identification

Φ(p) = pγ(p). The group of vertical automorphisms acts by pullback on Ω•(P). A pullback by Φ ∈ Autv(P) will
then equivalently be called an active gauge transformation by γ ∈ H . Now, for Ψ ∈ Autv(P) associated to the
elements η ∈ H , we have: Ψ∗γ(p) = γ(Ψ(p)) = γ(pη(p)) = η(p)−1γ(p)η(p). So the action of the gauge groupH on
itself, noted γη, is defined as: γη := Ψ∗γ = η−1γη. It reflects the defining equivariance of its elements.

To give the gauge transformations of the objects defined in the previous sections, we need to first consider the
smooth map,

C(γ) : P → G,

p 7→ Cp (γ(p)) .

Its equivariance is,

R∗hC(γ)(p) = Cph (γ(ph)) = Cph
(
h−1γ(p)h

)
= Cph

(
h−1)Cp (γ(p)h) = Cp(h)−1Cp(γ(p))Cpγ(p)(h),

R∗hC(γ) = C(h)−1C(γh) = C(h)−1C(γ) Φ∗C(h). (7)

Correspondingly we have,

Ψ∗C(γ)(p) = CΨ(p)
(
γ (Ψ(p))

)
= Cpη(p)

(
η(p)−1γ(p)η(p)

)
= Cp (η(p))−1 Cp

(
γ(p)η(p)

)
.

C(γ)η := Ψ∗C(γ) = C(η)−1C(γη). (8)

This map is given by the composition,

P
∆
−−→ P × P

id×γ
−−−−→ P × H

C
−−−−−−→ G,

p 7−−−→ (p, p) 7−−−→ (p, γ(p)) 7−−−→ Cp(γ(p)).

So its differential dC(γ)|p : TpP → TCp(γ(p))G is,

TpP
d∆
−−−→ TpP × TpP

id×dγ
−−−−−→ TpP × Tγ(p)G

dC(γ(p))|p + dCp|γ(p)
−−−−−−−−−−−−−−−−−−−−→ TCp(γ(p))G,

Xp 7−−−−→ (Xp, Xp) 7−−−−−−−→
(
Xp, dγ|p(Xp)︸    ︷︷    ︸

[X(γ)](p)

)
7−−−−−−−−−−→ dC(γ(p))|p(Xp) + dCp|γ(p)

(
dγp(Xp)

)︸                 ︷︷                 ︸
dCp(γ)|p(Xp)

.

So, if φτ is the flow of X with φτ=0 = p, we have:

dC(γ)|p(Xp) = dC(γ(p))|p(Xp) + dCp(γ)|p(Xp) = d
dτ

{
Cφτ(γ(p)) + Cp (γ(φτ))

} ∣∣∣
τ=0. (9)

Notice then that Cp(γ(p))−1dC(γ)|p : TpP → Te′G = LieG. We are then ready to state and prove the following two
propositions.

Proposition 3. The active gauge transformation of a twisted connection, noted ωγ, is

ωγ := Φ∗ω = C(γ)−1ωC(γ) + C(γ)−1dC(γ) ∈ C(P)T . (10)

Proof. Given the standard result Φ∗Xp = Rγ(p)∗Xp + [γ−1dγ]|p(Xp)
∣∣∣v
Φ(p) for X ∈ Γ(TP), we have:

(
Φ∗ω

)
p (Xp) = ωΦ(p)

(
Φ∗Xp

)
= ωΦ(p)

(
Rγ(p)∗Xp + γ(p)−1dγ|p(Xp)

∣∣∣v
Φ(p)

)
.
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The first term is easily worked out, by (II):

R∗γ(p)ωpγ(p)(Xp) =
(
Cp (γ(p))−1 ωp Cp (γ(p)) + Cp (γ(p))−1 dC (γ(p))|p

)
(Xp)

The second term needs special attention. By (I) we have:

ωΦ(p)

(
γ(p)−1dγ|p(Xp)

∣∣∣v
Φ(p)

)
= d

dτCpγ(p)
(
eτ γ(p)−1dγ|p(Xp)

) ∣∣∣
τ=0 = Cp (γ(p))−1 d

dτCp
(
γ(p)eτ γ(p)−1dγ|p(Xp)

) ∣∣∣
τ=0,

= Cp (γ(p))−1 dCp|γ(p)
(
γ(p) d

dτeτ γ(p)−1dγ|p(Xp)
∣∣∣
τ=0

)
= Cp (γ(p))−1 dCp|γ(p)

(
dγ|p(Xp)

)
,

= Cp (γ(p))−1 dCp(γ)|p(Xp).

Finally, we then obtain,(
Φ∗ω

)
p (Xp) =

(
Cp (γ(p))−1 ωp Cp (γ(p)) + Cp (γ(p))−1

(
dC (γ(p))|p + dCp(γ)|p

))
(Xp),

=
(
Cp (γ(p))−1 ωp Cp (γ(p)) + Cp (γ(p))−1 dC(γ)|p

)
(Xp).

By the way, from section 4.1 above, we have Φ∗ : C(P)T → C(P)T . So indeed ωγ ∈ C(P)T . �

Proposition 4. The active gauge transformation of a C-tensorial form, noted αγ, is

αγ := Φ∗α = ρ
[
C(γ)−1

]
α ∈ Ω•tens

(
P,C(H)

)
. (11)

Proof. Proceeding as above we get,(
Φ∗α

)
p (Xp, . . .) = αΦ(p)

(
Rγ(p)∗Xp + [γ−1dγ]|p(Xp)

∣∣∣v
Φ(p), . . .

)
,

= αΦ(p)
(
Rγ(p)∗Xp, . . .

)
,

= R∗γ(p)αΦ(p)(Xp, . . .) = ρ
[
Cp (γ(p))−1

]
αp(Xp, . . .).

Also, from section 4.1 we have Φ∗ : Ω•tens
(
P,C(H)

)
→ Ω•tens

(
P,C(H)

)
. So indeed αγ ∈ Ω•tens

(
P,C(H)

)
. �

From this follows the gauge transformations of the curvature, of sections and their covariant derivatives:

Ωγ := Φ∗Ω = C(γ)−1Ω C(γ), (12)

ϕγ := Φ∗ϕ = ρ
[
C(γ)−1

]
ϕ, (13)

(Dϕ)γ := Φ∗Dϕ = ρ
[
C(γ)−1

]
Dϕ. (14)

Using (10), equation (12) is alternatively found from the Cartan structure equation by having Ωγ = dωγ+ 1
2 [ωγ, ωγ],

and equation (14) by having (Dϕ)γ = Dγϕγ = dϕγ + ρ∗(ωγ)ϕγ.

Finally, we explicitly verify the following.

Proposition 5. The action of Autv(P) ' H on C(P)T and Ω•tens
(
P,C(H)

)
is a right action.

Proof. Given Φ,Ψ ∈ Autv(P) associated respectively to the elements γ, η ∈ H , and using (8) we have(
ωγ

)η := Ψ∗
(
Φ∗ω

)
= Ψ∗

(
C(γ)−1ωC(γ) + C(γ)−1dC(γ)

)
,

= C(γη)−1C(η)
(
C(η)−1ωC(η) + C(η)−1dC(η)

)
C(η)−1C(γη) + C(γη)−1C(η) d

(
C(η)−1C(γη)

)
,

= C(γη)−1ωC(γη) + C(γη)−1dC(γη).

This shows the consistency of the notation for active gauge transformations, in terms of which the above result is
simply (ωγ)η = ωγη. This extends easily to tensorial forms. For α ∈ Ω•tens

(
P,C(H)

)
:(

αγ
)η := Ψ∗

(
Φ∗α

)
= Ψ∗

(
ρ
[
C(γ)−1

]
α
)

= ρ
[
C(γη)−1C(η)

]
ρ
[
C(η)−1

]
α = ρ

[
C(γη)−1

]
α.

Which is simply (αγ)η = αγη. Further gauge transformations of Ω, ϕ and Dϕ are special cases of this result. �

We thus have well-defined spaces C(P)T , and Ω•tens
(
P,C(H)

)
endowed with an exterior covariant derivative D,

with a consistent right action of the gauge groupH ' Autv(P) of the underlying principal bundle P.
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5 Local description

We now turn to the local description of the global objects just described. As a principal bundle, P is locally
trivialisable, meaning that for any open subsetU of the base manifoldM: P|U ' U × H. Given a local trivialising
section σ : U → P|U , any form β ∈ Ω•(P) can be pulled-back as a form b := σ∗β ∈ Ω(U). Also, any vector
X ∈ Γ(TU) can be pushed-forward as a vector σ∗X ∈ Γ(TP|U).

The pullbacks of the connection and its curvature are respectively LieG-valued 1-form and 2-form on U. We
denote A :=σ∗ω ∈ Ω1(U,LieG), and F :=σ∗Ω ∈ Ω2(U,LieG). By the naturality of the pullback, Cartan’s structure
equation still holds: F = dA+ 1/2[A, A]. The pullback of a section ϕ ∈ Ω0

tens
(
P,C(H)

)
' Γ

(
EC)

is a V-valued map on
U that we denote φ :=σ∗ϕ ∈ Ω0(U,V). Still by naturality of the pullback we have that: Dφ :=σ∗Dϕ ∈ Ω1(U,V),
with Dφ = dφ + ρ∗(A)φ. In general, let us denote the pullbacks of a C-tensorial form and its exterior covariant
derivative α,Dα ∈ Ω•tens(P,C(H)) by a :=σ∗α,Da :=σ∗Dα ∈ Ω•(U,V), with Da = da + ρ∗(A)a.

If this framework would apply to (particle) physics - which happens on M, describing space-time - A would
be a generalised/twisted gauge potential and F would be its field strength, while φ would be a generalised/twisted
matter field and Dφ would describe its minimal coupling to A.

As forms on U ⊂ M, the local variables A, F, a and Da do not have equivariance w.r.t the structure group H
of P. Nevertheless, the fact that they are shadows of global objects shows both in their gluing properties from one
open subset of M to another, and in the local version of their gauge transformations. These are discussed in the
next two sections.

5.1 Gluing properties: passive gauge transformations

ConsiderU,U′ ⊂ M such thatU ∩U′ , ∅, endowed with local sections σ : U → P|U and σ′ : U′ → P|U′ . On
the overlap, both sections are related as

σ′ = σg, with g : U ∩U′ → H,

x 7→ g(x).

It is a standard result that for Xx ∈ TxM, x ∈ U ∩U′, the pushforwards by σ′ and σ are related by

σ′∗Xx = Rg(x)∗ (σ∗Xx) + [g−1dg]|x(Xx)
∣∣∣v
σ′(x), (15)

with σ′∗Xx ∈ Tσ′(x)P|U′ and σ∗Xx ∈ Tσ(x)P|U .
Furthermore, let us introduce the maps Cσ(h) := σ∗C(h) : U → G, with h ∈ H, as well as Cσ(g) : U → G.

Notice that, just like C(γ) has a double dependence on p ∈ P, Cσ(g) has a double dependence on x ∈ U∩U′ ⊂ M.
Their counterparts onU′ are Cσ′(h) :=σ′∗C(h) : U′ → G and Cσ′(g′) : U′ → G, and we have

Cσ′(x)(h) = Cσ(x)g(x)(h) = Cσ(x)(g(x))−1Cσ(x)
(
g(x)h

)
,

Cσ′(x)(g′(x)) = Cσ(x)g(x)
(
g′(x)

)
= Cσ(x)(g(x))−1Cσ(x)

(
g(x)g′(x)

)
, (16)

We are ready to state the following,

Proposition 6. The gluing properties of the local representatives of a twisted connection and a tensorial form are,

A′ = Cσ(g)−1A Cσ(g) + Cσ(g)−1dCσ(g), (17)

a′ = ρ
[
Cσ(g)−1

]
a. (18)

Proof. For the connection, using (15) and (I)-(II), we have:

A′x(Xx) = σ′∗ωσ′(x)(Xx) = ωσ′(x)(σ′∗Xx) = ωσ′(x)
(
Rg(x)∗ (σ∗Xx) + [g−1dg]|x(Xx)

∣∣∣v
σ′(x)

)
,

= R∗g(x)ωσ′(x)(σ∗Xx) + d
dτCσ′(x)

(
eτ [g−1dg]|x(Xx)

) ∣∣∣
τ=0,

=
(
Cσ(x)(g(x))−1ωσ(x)Cσ(x)(g(x)) + Cσ(x)(g(x))−1dC(g(x))|σ(x)

)
(σ∗Xx)

+ d
dτCσ(x)(g(x))−1Cσ(x)

(
g(x) eτ g(x)−1dg|x(Xx)

) ∣∣∣
τ=0,
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= Cσ(x)(g(x))−1σ∗ωσ(x)(Xx) Cσ(x)(g(x)) + Cσ(x)(g(x))−1dCσ(g(x))|x(Xx)

+ Cσ(x)(g(x))−1dCσ(x)| g(x)

(
g(x) d

dτeτ g(x)−1dg|x(Xx)
∣∣∣
τ=0︸                        ︷︷                        ︸

dg|x(Xx)

)
,

=

(
Cσ(x)(g(x))−1Ax Cσ(x)(g(x)) + Cσ(x)(g(x))−1( dCσ(g(x))|x + dCσ(x)(g)|x︸                          ︷︷                          ︸

dCσ(g)|x

))
(Xx).

Likewise for a tensorial form,

a′x(Xx, . . .) = σ′∗ασ′(x)(Xx, . . .) = ασ′(x)(σ′∗Xx, . . .),

= ασ′(x)
(
Rg(x)∗ (σ∗Xx) + [g−1dg]|x(Xx)

∣∣∣v
σ′(x), . . .

)
,

= R∗g(x)ασ′(x)(σ∗Xx, . . .),= ρ
[
Cσ(x)(g(x))−1

]
ασ(x)(σ∗Xx, . . .),

= ρ
[
Cσ(x)(g(x))−1

]
σ∗ασ(x)(Xx, . . .) = ρ

[
Cσ(x)(g(x))−1

]
ax(Xx, . . .).

�

The last result holds true for the exterior covariant derivative: (Da)′ = ρ
[
Cσ(g)−1

]
Da, which is also found from

(17) by having (Da)′ = D′a′ = da′ + ρ∗(A′) a′. In the language of physics, this would be an implementation of
the gauge principle. As a special case of (18), we obtain the gluing properties of the local representatives of the
curvature, sections and their covariant derivative,

F′ = Cσ(g)−1F Cσ(g), φ′ = ρ
[
Cσ(g)−1

]
φ and (Dφ)′ = D′φ′ = ρ

[
Cσ(g)−1

]
Dφ. (19)

The first result can be obtain from Cartan’s structure equation and (17) by having, F′ = dA′ + 1
2 [A′, A′].

Suppose now that we have a third open subset U′′ such that U′′ ∩ U′ ∩ U , ∅, and consider a section
σ′′ : U′′ → G such that onU′′ ∩U′ ∩U,

σ′′ = σ′g′ = σgg′, where g′ : U′′ ∩U′ ∩U → H,

x 7→ g′(x).

We check that the gluing properties are well-behaved across open subsets. Using (16) and (17) we find that,

A′′ = Cσ′(g′)−1A′Cσ′(g′) + Cσ′(g′)−1dCσ′(g′),

= Cσ(gg′)−1Cσ(g)
(
Cσ(g)−1A Cσ(g) + Cσ(g)−1dCσ(g)

)
Cσ(g)−1Cσ(gg′)

+ Cσ(gg′)−1Cσ(g)d
(
Cσ(g)−1Cσ(gg′)

)
,

= Cσ(gg′)−1A Cσ(gg′) + Cσ(gg′)−1dCσ(gg′). (20)

In the same way, using (16) and (18),

a′′ = ρ
[
Cσ′(g′)−1

]
a′ = ρ

[
Cσ(gg′)−1Cσ(g)

]
ρ
[
Cσ(g)−1

]
a = ρ

[
Cσ(gg′)−1

]
a. (21)

So that, (Dα)′′= ρ
[
Cσ(gg′)−1

]
Da, which is also obtained from (Da)′′= D′′a′′=da′′ + ρ∗(A′′) a′′. As special cases

of this result, we have:

F′′= Cσ(gg′)−1F Cσ(gg′), φ′′= ρ
[
Cσ(gg′)−1

]
φ and (Dφ)′′= ρ

[
Cσ(gg′)−1

]
Dφ. (22)

The gluing properties (17)-(18) in proposition 6 resemble the active gauge transformations of propositions 3
and 4. But while the latter describe the transformation of global objects (i.e. living on P) into new global objects,
the former merely describe how the same global objects are seen from different open subsets of M - or from the
same subset but through different local sections. This justifies the terminology passive gauge transformations for
the gluing properties, that is of common use in physics.
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This is in close analogy with changes of coordinate representations of intrinsic geometric objects on M in
(pseudo) Riemannian geometry and General Relativistic physics, which are dubbed passive diffeomorphisms due
to their formal identity with the action of Diff(M) which transforms intrinsic objects into new ones. Elements of
Diff(M) are therefore sometimes called active diffeomorphisms.

Yet, there is obviously also a local representation of the active gauge transformations discussed in section 4.2.
This is the object of the next section.

5.2 Local active gauge transformations

Let us first denote the local representatives on U ⊂ M of the gauge group elements γ, η ∈ H by upright greek
letters, γ := σ∗γ : U → H, and η := σ∗η : U → H. The local gauge group on U is then simply defined as
Hloc :=

{
γ : U → H |γη = η−1γη

}
, where the defining property is the pullback by σ of the action of H on itself.

We then define the smooth map,

Cσ(γ) := σ∗C(γ) : U → G,

x 7→ Cσ(x)(γ(x)),

which resembles the map Cσ(g) introduced above. Its local active gauge transformation is,

Cσ(γ)η := σ∗
(
C(γ)η

)
= σ∗

(
C(η)−1C(γη)

)
= Cσ(η)−1Cσ(γη) (23)

Notice the close formal analogy with (16). The local active gauge transformations of a connection and tensorial
forms are then:

Aγ = σ∗ωγ = σ∗
(
C(γ)−1ωC(γ) + C(γ)−1dC(γ)

)
,

= Cσ(γ)−1A Cσ(γ) + Cσ(γ)−1dCσ(γ). (24)

and

aγ = σ∗αγ = σ∗
(
ρ
[
C(γ)−1

]
α
)
,

= ρ
[
Cσ(γ)−1

]
a. (25)

This latter result holds true for the exterior covariant derivative, (Da)γ = ρ
[
Cσ(γ)−1

]
Da, which is also obtained

from (24) via (Da)γ = Dγaγ = daγ + ρ∗ (Aγ) aγ. This is again an implementation of the gauge principle.
As a special case of (25), we obtain the local active gauge transformations of the curvature, sections and their

covariant derivative,

Fγ = Cσ(γ)−1F Cσ(γ), φγ = ρ
[
Cσ(γ)−1

]
φ and (Dφ)γ = Dγφγ = ρ

[
Cσ(γ)−1

]
Dφ. (26)

The first result being also obtained from Cartan’s structure equation and (24) via Fγ = dAγ + 1
2 [Aγ, Aγ].

Finally, from (23) is is easily seen that,

(Aγ)η = Aγη = Cσ(γη)−1A Cσ(γη) + Cσ(γη)−1dCσ(γη),

(aγ)η = aγη = ρ
[
Cσ(γη)−1

]
a.

Further transformations of F, φ and Dφ ensue. This shows that the action of Hloc on local objects on U ⊂ M is a
well-behaved right action.

Let us reiterate a standard yet important gauge theoretic observation: The local active gauge transformations
(24)-(25), relating local representatives seen through the same section σ (by the same observer) of different global
objects, are formally indistinguishable from the passive gauge transformations (17)-(18), relating local representa-
tives seen through different sections σ and σ′ (by distinct observers) of the same global objects. This is clear by
observing that σ∗Φ(p) = Φ(σ(x)) = σ(x)γ(σ(x)) = σ(x)γ(x). So the pullback by σ of objects actively transformed
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by Φ/γ is formally equivalent to the pullback of the untransformed objects by a new local section σ′ = σγ. Never-
theless, in physics, symmetry under active gauge transformations is of much greater conceptual importance than the
mere symmetry under passive ones. In the case of general relativistic physics for example, while symmetry of the
theory under coordinate changes translates as a principle - the principle of general relativity - of democratic access
to intrinsic objects ofM which is thus at first seen as identical to the objective spacetime, symmetry under Diff(M)
implies that the manifoldM and its points are non-physical and that only relative field configurations over it - that
can be diffeomorphically dragged - have physical meaning (this is the famous “hole argument”). In Yang-Mills
gauge theories - and a fortiori here - it is still not entirely clear how one should interpret the two types of formally
equivalent symmetries.1

6 Mixing with the standard situation

In this section we consider the minimal conditions under which the geometry described above mixes and coexists
with the standard one. At the risk of some repetition, we thus slightly generalise the previous construction.

We will first suppose that the structure group of the bundle P is a direct product H × K, whose elements are
written (h, k) = hk for h ∈ H and k ∈ K. With the two subgroups commuting, the composition law is simply
hk · h′k′ = hkh′k′ = hh′kk′ ∈ H × K. The right action on P is thus Rhk = Rkh, and the right actions of the two
subgroups commute: Rh ◦ Rk = Rk ◦ Rh.

We also consider the (inner) semi-direct product group G o K, whose elements are written gk for g ∈ G and
k ∈ K. The two subgroups do not commute, the composition law is gk · g′k′ = gkg′k′ = g kg′k−1 · kk′ ∈ G o K,
and the group morphism K → Aut(G) defining the semi-direct product is k 7→ Conj(k). Finally, we require that the
representation (ρ,V) of G extends to a representation of GoK, and is therefore a representation for both subgroups.

The group of vertical automorphisms is also a direct product Autv(P) = Autv(P,H)×Autv(P,K), with elements
Ψ = (Φ,Ξ). Correspondingly, the gauge group is H × K with elements (γ, ζ) = γζ. The association is Ψ(p) =

pγ(p)ζ(p). Because of the commutativity of the actions of H and K we have,

R∗kγ = γ, Ξ∗γ = γ,

R∗hζ = ζ, Φ∗ζ = ζ.
(27)

From this we have indeed that Ψ = Φ ◦ Ξ = Ξ ◦ Φ.
Consider Xv and Yv ∈ Γ(VP) generated respectively by X ∈ LieH and Y ∈ LieK. We have the infinitesimal

versions of the above equivariance laws,

LYvγ = Yv(γ) = 0 and LXvζ = Xv(ζ) = 0. (28)

Still by commutativity of the action of H and K we get,

Rk∗Xv
p = Xv

pk, Rk∗Yv
p = Adk−1Y

∣∣∣v
pk,

Rh∗Yv
p = Yv

ph, Rh∗Xv
p = Adk−1 X

∣∣∣v
ph,

(29)

Also, for Zv = {Xv,Yv} it is easily shown that Φ∗Zv
p = Zv

Φ(p) and Ξ∗Zv
p = ZΞ(p).

The definition of the cocycle map C prescribes its H-equivariance. We need to specify also its K-equivariance.
It is easily found that the simplest choice compatible with its H-equivariance is, for h′ ∈ H and k ∈ K,

R∗kC(h′) = k−1C(h′)k, whose infinitesimal version is LYvC(h′) = [C(h′),Y]. (30)

Indeed, from (3) and (30), one has on the one hand Cpkh(h′) = Cpk(h)−1Cpk(hh′) = k−1Cp(h)−1k · k−1Cp(hh′)k. And
on the other hand,, Cphk(h′) = k−1Cph(h′)k = k−1Cp(h)−1Cp(hh′)k. The infinitesimal equivariance if obtained from
(LYvC(h′)) (p) = d

dτCpeτY (h′)
∣∣∣
τ=0. It follows that the K-gauge transformation of this map is,

C(h′)ζ := Ξ∗C(h′) = ζ−1C(h′)ζ. (31)

1This matter is distinct from another important discussion, mainly addressed by philosophers of physics, regarding the demarcation
criterion between substantial and artificial gauge symmetries. A main takeaway is that substantial gauge symmetries (either passive or
active) in Yang-Mills theories signal non-local physical properties or phenomena, while artificial symmetries do not. See [14] and references
therein.
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In the same way, the H-equivariance of the map C(γ) is known from (7). From above, we get its K-equivariance

R∗kC(γ) = k−1C(γ)k, with infinitesimal version LYvC(γ) = [C(γ),Y]. (32)

From which follows that,

C(γ)ζ := Ξ∗C(γ) = ζ−1C(γ)ζ. (33)

Now, let us see what we can do with these ingredients.

6.1 Mixed vector bundles and tensorial forms

Given a representation (ρ,V) of G o K, we define the mixed vector bundle EC = P ×C(H)oK V := P × V/ ∼, with
equivalence relation (p, v) ∼

(
phk = pkh, ρ

(
k−1Cp(h)−1

)
v
)
. It is well defined because on the one hand we have,

(p, v) ∼
(
ph, ρ

[
Cp(h)−1

]
v
)
∼

(
phk, ρ

(
k−1

)
ρ
[
Cp(h)−1

]
v
)

=
(
phk, ρ

[
k−1Cp(h)−1

]
v
)
.

On the other hand, using (30),

(p, v) ∼
(
pk, ρ

(
k−1

)
v
)
∼

(
pkh, ρ

[
Cpk(h)−1

]
ρ
(
k−1

)
v
)

=
(
pkh, ρ

[
k−1Cp(h)−1k

]
ρ
(
k−1

)
v
)

=
(
pkh, ρ

[
k−1Cp(h)−1

]
v
)
.

It is clear that the twisted bundle EC = P ×C(H) V is a subbundle of EC , and so is the standard vector bundle
E = P ×K V := P × V/ ∼ for the equivalence relation (p, v) ∼

(
pk, ρ(k−1)v

)
. Hence the name for EC .

Define the space of C(H) o K-tensorial differential forms,

Ω•tens
(
P,C(H)oK

)
=

{
α ∈ Ω•(P,V)

∣∣∣αp(Zv
p, . . .) = 0 for Zv = {Xv,Yv}, and R∗hkα = R∗khα = ρ

(
Cp(h)k

)−1α
}
.

Clearly, these are in particular both C(H)-tensorial and K-tensorial, and we indeed verify the compatibility relations:

R∗k
(
R∗hαpkh

)
= R∗k

(
ρ
(
Cp(h)−1

)
αpk

)
= ρ

(
Cpk(h)−1

)
R∗kαpk = ρ

(
k−1Cp(h)−1k

)
ρ
(
k−1

)
αp = ρ

(
k−1Cp(h)−1

)
αp,

R∗h
(
R∗kαphk

)
= R∗h

(
ρ
(
k−1

)
αph

)
= ρ

(
k−1

)
ρ
(
Cp(h)−1

)
αp.

As per the usual argument, there is an isomorphism Γ
(
EC)
' Ω0

tens
(
P,C(H)oK

)
.

Again, the question arises as to the adequate notion of connection on P that provides a good covariant derivative
on Ω•tens

(
P,C(H)oK

)
, and on sections of EC in particular.

6.2 Mixed twisted connections

We endow the bundle P(M,H×K) with a connection ω ∈ Ω1
eq
(
P,Lie

(
G o K)

)
satisfying,

ωp
(
Xv

p + Yv
p

)
= d

dτCp
(
eτ X

) ∣∣∣
τ=0 + Y = dCp|e(X) + Y ∈ LieG ⊕ LieK, (I?)

R∗hkωphk = R∗khωpkh = [Cp(h)k]−1ωp [Cp(h)k] + [Cp(h)k]−1d[C(h)k]|p. (II?)

It is clear that on the H-subbundle, ω satisfies the properties (I)-(II) of a twisted connection, while on the K-
subbundle it satisfies the definition of a standard K-principal connection: ωp(Yv

p) = Y and R∗kωpk = Adk−1ωp. We
therefore call a 1-form ω defined by (I?) and (II?), a mixed twisted connection.

6.2.1 Covariant derivative

The infinitesimal version of the equivariance property of tensorial forms is,

LXv+Yvα = d
dτR∗eτ(X+Y)α

∣∣∣
τ=0 = d

dτ ρ
[
e−τYC

(
eτX

)−1
]
α
∣∣∣
τ=0 = −ρ∗

[
Y + d

dτC
(
eτX

) ∣∣∣
τ=0

]
α = −ρ∗

(
Y + dCe(X)

)
α.

With this in mind, we obtain the following.
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Proposition 7. The exterior covariant derivative defined as D := d +ρ∗(ω) preserves both Ω•eq
(
P,C(H)oK

)
and

Ω•tens
(
P,C(H)oK

)
.

Proof. First, using (II?),we show that D : Ω•eq
(
P,C(H)oK

)
→ Ω•eq

(
P,C(H)oK

)
. For α ∈ Ω•eq

(
P,C(H)oK

)
:

R∗hkDα = dR∗hkα + ρ∗
(
R∗hkω

)
R∗hkα,

= dρ
(
C(h)k

)−1
· α + ρ

(
C(h)k

)−1dα + ρ∗
(
[C(h)k]−1ω [C(h)k] + [C(h)k]−1d[C(h)k]

)
ρ
(
C(h)k

)−1α,

= ρ
(
C(h)k

)−1(dα + ρ∗(ω)α
)

= ρ
(
C(h)k

)−1Dα.

Then, using (I?), we show that D : Ω•tens
(
P,C(H)oK

)
→ Ω•tens

(
P,C(H)oK

)
. It is enough to prove it for α ∈

Ω1
tens

(
P,C(H)oK

)
:

Dα(Xv + Yv,Z) =
(
dα + ρ∗(ω)α

)
(Xv + Yv,Z),

= dα(Xv + Yv,Z)︸            ︷︷            ︸
(LXv+Yvα)(Z)

+ρ∗(ω(Xv + Yv))α(Z) − ρ∗(ω(Z))α(Xv + Yv)︸       ︷︷       ︸
=0

,

= −ρ∗
(
Y + dCe(X)

)
α(Z) + ρ∗

(
dCe(X) + Y

)
α(Z) = 0.

�

In particular, D provides a good notion of covariant differentiation of sections of the mixed vector bundle EC .

6.2.2 Curvature

The curvature of the mixed connection is defined in the usual way, so that we have the result:

Proposition 8. The curvature Ω = dω + 1
2 [ω,ω] is a mixed tensorial 2-form, Ω ∈ Ω2

tens
(
P,C(H)oK

)
. It satisfies a

Bianchi identity DΩ = dΩ + [ω,Ω] = 0.

Proof. The equivariance is proven the usual way via (II?),

R∗hkΩ = dR∗hkω + 1
2 [R∗hkω,R

∗
hkω],

= d
(
[C(h)k]−1ω [C(h)k] + [C(h)k]−1d[C(h)k]

)
+ 1

2

[
[C(h)k]−1ω [C(h)k] + [C(h)k]−1d[C(h)k], [C(h)k]−1ω [C(h)k] + [C(h)k]−1d[C(h)k]

]
,

= . . .

= [C(h)k]−1
(
dω + 1

2 [ω,ω]
)

[C(h)k] = [C(h)k]−1Ω [C(h)k].

Now, taking Yv = 0 in (I?), the horizontality of Ω w.r.t. H-vertical vector fields is proven as in Proposition 2. Taking
Xv = 0 in (I?), ω is a standard Ehresmann K-connection, so the horizontality of Ω w.r.t. K-vertical vector fields is
proven the usual way. By linearity, Ω is H ×K-horizontal. It is therefore C(H)oK-tensorial. Since here ρ = Ad, the
covariant derivative is DΩ = dΩ + [ω,Ω] and vanishes by definition of Ω.

�

It is easily seen that another standard result that extends to the mixed case is that for α ∈ Ω•tens
(
P,C(H)oK

)
,

D2α = DDα = ρ∗(Ω)α.

6.3 Mixed gauge transformations

The gauge transformations of the mixed connection and tensorial forms assume a simple form because the actions
of Autv(P,H) ' H and Autv(P,K) ' K commute. Indeed we have the following.

Proposition 9. The gauge transformations of ω and α ∈ Ω•tens
(
P,C(H)oK

)
are,

ωγζ = [C(γ)ζ]−1ω [C(γ)ζ] + [C(γ)ζ]−1d[C(γ)ζ], (34)

αγζ = ρ
[
C(γ)ζ

]−1α. (35)
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Proof. First, notice that the push forward of a vector Xp ∈ TpP by a vertical automorphism Ψ ∈ Autv(P,H × K) is,

Ψ∗Xp = R(γζ)(p)∗Xp + [(γζ)(p)]−1d(γζ)p(Xp)
∣∣∣v
Ψ(p),

= Rγ(p)ζ(p)∗Xp + γ(p)−1dγ|p(Xp)
∣∣∣v
Ψ(p) + ζ(p)−1dζ|p(Xp)

∣∣∣v
Ψ(p)

Therefore, the full gauge transformation of the mixed connection is by definition,

ω
γζ
p (Xp) :=

(
Ψ∗ω

)
p (Xp) = ωΨ(p)

(
Ψ∗Xp

)
= R∗γ(p)ζ(p)ωΨ(p)(Xp) + d

dτCΨ(p)
(
eγ(p)−1dγp(Xp)

) ∣∣∣
τ=0 + ζ(p)−1dζ|p(Xp),

=
(
[Cp(γ(p))ζ(p)]−1ωp[Cp(γ(p))ζ(p)] + [Cp(γ(p))ζ(p)]−1d[C(γ(p))ζ(p)]|p

)
(Xp)

+ ζ(p)−1 d
dτCpγ(p)

(
eγ(p)−1dγp(Xp)

) ∣∣∣
τ=0 ζ(p) + ζ(p)−1dζ|p(Xp),

= [Cp(γ(p))ζ(p)]−1ωp(Xp)[Cp(γ(p))ζ(p)] + ζ(p)−1 Cp(γ(p))−1dC(γ(p))|p(Xp) ζ(p)

+ ζ(p)−1
(
Cp(γ(p))−1dCp(γ)|p

)
(Xp) ζ(p) + ζ(p)−1dζ|p(Xp),

= [Cp(γ(p))ζ(p)]−1ωp(Xp)[Cp(γ(p))ζ(p)] + ζ(p)−1 Cp(γ(p))−1dC(γ)|p(Xp) ζ(p)

+ ζ(p)−1dζ|p(Xp),

= [Cp(γ(p))ζ(p)]−1ωp(Xp)[Cp(γ(p))ζ(p)] + ζ(p)−1 Cp(γ(p))−1d[C(γ)ζ]|p(Xp),

=
(
[C(γ)ζ]−1ω [C(γ)ζ] + [C(γ)ζ]−1d[C(γ)ζ]

)
|p

(Xp).

In the same way, for a mixed tensorial form,

α
γζ
p (Xp, . . .) :=

(
Ψ∗α

)
p (Xp, . . .) = αΨ(p)

(
Ψ∗Xp, . . .

)
= αΨ(p)

(
Rγ(p)ζ(p)∗Xp, . . .

)
= R∗γ(p)ζ(p)αΨ(p)(Xp, . . .),

= ρ
[
Cp(γ(p))ζ(p)

]−1αp(Xp, . . .) =
(
ρ
[
C(γ)ζ

]−1α
)
|p

(Xp, . . .).

�

As special cases of (35), we obtain the gauge transformations of the curvature, of mixed sections and their
covariant derivative,

Ωγζ = [C(γ)ζ]−1Ω [C(γ)ζ], ϕγζ = ρ
[
C(γ)ζ

]−1ϕ, and (Dϕ)γζ = ρ
[
C(γ)ζ

]−1Dϕ.

It is clear from (34) that ω transforms in particular as a twisted connection underH and a standard connection
under K . So, on the one hand, by (27),

(ωζ)γ = Φ∗
(
Ξ∗ω

)
= Φ∗

(
ζ−1ω ζ + ζ−1dζ

)
= ζ−1Φ∗ω ζ + ζ−1dζ,

= ζ−1
(
C(γ)−1ωC(γ) + C(γ)−1dC(γ)

)
ζ + ζ−1dζ,

= ζ−1C(γ)−1ωC(γ)ζ + ζ−1C(γ)−1d (C(γ)ζ) .

On the other hand, by (33) ,

(ωγ)ζ = Ξ∗
(
Φ∗ω

)
= Ξ∗

(
C(γ)−1ωC(γ) + C(γ)−1dC(γ)

)
,

= ζ−1C(γ)−1ζ
(
ζ−1ω ζ + ζ−1dζ

)
ζ−1C(γ)ζ + ζ−1C(γ)−1ζd

(
ζ−1C(γ)ζ

)
,

= ζ−1C(γ)−1ωC(γ)ζ + ζ−1C(γ)−1d (C(γ)ζ) .

In the same way, from (35) it is clear that α transforms in particular as a twisted tensorial form under H and as a
standard tensorial form under K . So that,

(αζ)γ = Φ∗
(
Ξ∗α

)
= Φ∗

(
ρ
(
ζ−1

)
α
)

= ρ
(
ζ−1

)
ρ
[
C(γ)−1

]
α = ρ

[
C(γ)ζ

]−1α,

(αγ)ζ = Ξ∗
(
Φ∗α

)
= Ξ∗

(
ρ
[
C(γ)−1

]
α
)

= ρ
[
ζ−1C(γ)−1ζ

]
ρ
(
ζ−1

)
α = ρ

[
C(γ)ζ

]−1α.
(36)

The results (34)-(35) indeed express the commutativity of the action ofH and K .
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We can use a notational game that allows to perform symbolically the computation of gauge transformations
we have seen so far, and may be used as a memory trick. If ωζ denotes the result of a gauge transformation by K , a
further such transformation is noted (ωζ)ξ = (ωξ)ζ

ξ
= (ωξ)ξ

−1ζξ = ωζξ. Now, denote ωγ = ωC(γ) the result of a gauge
transformation by H . A further such transformation if then (ωγ)η = (ωC(γ))η = (ωη)C(γ)η = (ωC(η))C(η)−1C(γη) =

ωC(γη). Then, (ωγ)ζ = (ωC(γ))ζ = (ωζ)C(γ)ζ = (ωζ)ζ
−1C(γ)ζ = ωC(γ)ζ . Also, (ωζ)γ = (ωγ)ζ

γ
= (ωC(γ))ζ = ωC(γ)ζ . So

we could note ωγζ as ωC(γ)ζ instead. This would have the advantage of making the mixed structure clear. Idem for
twisted or mixed tensorial forms.

6.4 Local version

To be complete, and at the risk of some redundancy, we provide in the next two subsections the local description of
the above mixed global geometry.

6.4.1 Passive mixed gauge transformations

Consider again U,U′ ⊂ M such that U ∩ U′ , ∅, with the local sections σ : U → P|U and σ′ : U′ → P|U′
related by,

σ′ = σg`, where g : U ∩U′ → H, and ` : U ∩U′ → K.

= σ`g x 7→ g(x) x 7→ `(x)

Then, for Xx ∈ TxM, x ∈ U ∩U′, the pushforwards by σ′ and σ are related by

σ′∗Xx = Rg(x)`(x)∗ (σ∗Xx) + [(g`)−1d(g`)]|x(Xx)
∣∣∣v
σ′(x),

= Rg(x)`(x)∗ (σ∗Xx) + [g−1dg]|x(Xx)
∣∣∣v
σ′(x) + [`−1d`]|x(Xx)

∣∣∣v
σ′(x).

From this we find the following gluing properties.

Proposition 10. The gluing properties of the local representatives onU andU′ of a mixed connection and a mixed
tensorial forms are,

A′ = [Cσ(g)`]−1A [Cσ(g)`] + [Cσ(g)`]−1d[Cσ(g)`], (37)

a′ = ρ
[
Cσ(g)`

]−1a. (38)

Proof. The proof is as for active gauge transformations in Proposition 9. Using (I?)-(II?) as well as the proof of
Proposition 6, we find:

A′x(Xx) = (σ′∗ω)x(Xx) = ωσ′(x)
(
σ′∗Xx

)
,

= ωσ′(x)
(
Rg(x)`(x)∗ (σ∗Xx) + [g−1dg]|x(Xx)

∣∣∣v
σ′(x) + [`−1d`]|x(Xx)

∣∣∣v
σ′(x)

)
,

= R∗g(x)`(x)ωσ′(x) (σ∗Xx) + d
dτCσ′(x)

(
eτ [g−1dg]|x(Xx)

) ∣∣∣
τ=0 + [`−1d`]|x(Xx),

=
(
[Cσ(x) (g(x)) `(x)]−1ωσ(x) [Cσ(x) (g(x)) `(x)] + [Cσ(x) (g(x)) `(x)]−1d[C(g(x))`(x)]|σ(x)

)
(σ∗Xx)

+ `(x)−1
(

d
dτCσ(x)g(x)

(
eτ [g−1dg]|x(Xx)

) ∣∣∣
τ=0

)
`(x) + [`−1d`]|x(Xx),

=
(
[Cσ(x) (g(x)) `(x)]−1Ax [Cσ(x) (g(x)) `(x)] + [Cσ(x) (g(x)) `(x)]−1d[Cσ(g(x))`(x)]|x

)
(Xx)

+ `(x)−1Cσ(x)(g(x))−1dCσ(x)(g)|x(Xx) `(x) + [`−1d`]|x(Xx),

=
(
[Cσ(x) (g(x)) `(x)]−1Ax [Cσ(x) (g(x)) `(x)] + [Cσ(x) (g(x)) `(x)]−1d[Cσ(g)`(x)]|x

)
(Xx) + [`−1d`]|x(Xx),

=
(
[Cσ(x) (g(x)) `(x)]−1Ax [Cσ(x) (g(x)) `(x)] + [Cσ(x) (g(x)) `(x)]−1d[Cσ (g) `]|x

)
(Xx).

For the local representatives of a tensorial form α ∈ Ω•tens
(
P,C(H)oK

)
we get:

a′x(Xx, . . .) =
(
σ′∗α

)
x (Xx, . . .) = ασ′(x)

(
σ′∗Xx, . . .

)
= ασ′(x)

(
Rg(x)`(x)∗ (σ∗Xx) , . . .

)
= R∗g(x)`(x)ασ(x) (σ∗Xx, . . .) ,

= ρ
[
Cσ(x)(g(x))`(x)

]−1ασ(x) (σ∗Xx, . . .) = ρ
[
Cσ(x)(g(x))`(x)

]−1ax (Xx, . . .) .

�
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This last result is also valid for the exterior covariant derivative, which is also found by having (Da)′ = D′a′ =

da′ + ρ∗ (A′) a′. As special cases of (38), we have the gluings of the local representatives of the curvature, sections
and their covariant derivative:

F′ = [Cσ(g)`]−1F [Cσ(g)`], φ′ = ρ
[
Cσ(g)`

]−1φ and (Dφ)′ = D′φ′ = ρ
[
Cσ(g)`

]−1Dφ. (39)

And as usual the first result is also obtained from Cartan structure equation and (37).

6.4.2 Local active mixed gauge transformations

On a single open set U ⊂ M with local section σ : U → P|U , the local gauge group is Hloc × Kloc, with
Hloc :=

{
γ : U → H |γη = η−1γη

}
and Kloc :=

{
ζ : U → K | ζξ = ξ−1ζξ

}
, but also - as local version of (27) -

γζ = γ and ζγ = ζ. TheHloc-transformation of the map Cσ(γ) : U → G is given by (23). Its Kloc-transformation,
the counterpart of (33), is

Cσ(γ)ζ = ζ−1Cσ(γ)ζ. (40)

The local mixed active gauge transformations of A and a are simply,

Aγζ = σ∗ωγζ = [Cσ(γ)ζ]−1A [Cσ(γ)ζ] + [Cσ(γ)ζ]−1d[Cσ(γ)ζ], . (41)

aγζ = σ∗αγζ = ρ[Cσ(γ)ζ]−1a. (42)

We prove as in section 6.3 that Hloc and Kloc commute. Using (40), one easily shows that
(
Aγ)ζ =

(
Aζ)γ and(

aγ
)ζ

=
(
aζ

)γ. Here also we could write (41) as AC(γ)ζ and (42) as aC(γ)ζ.
Again, (42) hold for (Da) and is also found via (Da)γζ = Dγζaγζ. The mixed local gauge transformations for

F, φ and Dφ are found as special cases,

Fγζ = [Cσ(γ)ζ]−1F [Cσ(γ)ζ], φγζ = ρ [Cσ(γ)ζ]−1 φ and (Dφ)γζ = ρ [Cσ(γ)ζ]−1 Dφ. (43)

As always, the transformation of F is also obtained from Cartan’s structure equation and (41).
Finally, we notice the exact formal resemblance between (37)-(38) and (41)-(42), and refer back to our com-

ments at the end of section 5.2.

7 Action of the Lie algebra of vertical automorphisms

Let us denote the Lie algebras of Autv(P,H) andH respectively by autv(P,H) and LieH . Given Φτ ∈ Autv(P,H),
we have Φτ(p) = pγτ(p) = peτ χ(p) with χ : P → LieH. Since R∗hγτ = h−1γτh, it comes that R∗h χ = Adh−1χ. We
have then LieH :=

{
χ : P → LieH |R∗h χ = Adh−1χ

}
. In other terms LieH = C∞Ad(P,LieH) ' Γ (P ×Ad LieH).

Now, Φτ is the flow of the vector field

χv
p := d

dτΦτ(p)
∣∣∣
τ=0 = d

dτ peτ χ(p)
∣∣∣
τ=0. (44)

By the way, χv
ph := d

dτ pheτ χ(ph) = d
dτ pheτ h−1χ(p)h = d

dτ ph h−1eτ χ(p)h = d
dτRh

(
peτ χ(p)

)
=: Rh∗ χ

v
p. That is χv is

a right-invariant vector field, χv ∈ ΓH(TP). Conversely it is easily shown that the flow φτ : P → P of a right-
invariant vertical vector field is such that φτ(ph) = φτ(p)h and π ◦ φτ = π, i.e. it is a vertical automorphism. So
autv(P,H) = ΓH(TP) ∩ Γ(VP). The definition (44) describe explicitly the isomorphism autv(P,H) ' LieH .

7.1 Infinitesimal gauge transformations

To begin with, we want the infinitesimal counterpart of propositions (3) and (4). For this, let us first give the
following result,

d
dτCp

(
eτ χ(p)

) ∣∣∣
τ=0 = dCp|e

(
d
dτeτ χ(p)

∣∣∣
τ=0

)
= dCp|e(χ(p)). (45)

Remember that in dCp|e, d is not de Rham derivative on P but signifies the pushforward of the map Cp : H → G.
Given this, it is easy to prove the following,
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Proposition 11. The infinitesimal active gauge transformations of the connection and of C-tensorial forms are,

Lχvω = d
(
dC|e(χ))

)
+

[
ω, dC|e(χ)

]
,

Lχvα = −ρ∗
(
dC|e(χ)

)
α.

(46)

Proof. The Lie derivative of ω w.r.t χv is,

Lχvω := d
dτ Φ∗τω

∣∣∣
τ=0 = d

dτ C
(
eτ χ

)−1 ωC
(
eτ χ

)
+ C

(
eτ χ

)−1 dC
(
eτ χ

) ∣∣∣
τ=0,

= − d
dτC

(
eτ χ

) ∣∣∣
τ=0 ω + ω d

dτC
(
eτ χ

) ∣∣∣
τ=0 + d d

dτC
(
eτ χ

) ∣∣∣
τ=0.

Using (45) the result follows. As for α ∈ Ω•tens
(
P,C(H)

)
,

Lχvα := d
dτ Φ∗τα

∣∣∣
τ=0 = d

dτ ρ
[
C

(
eτ χ

)−1
]
α
∣∣∣
τ=0 = −ρ∗

[
d
dτC

(
eτ χ

) ∣∣∣
τ=0

]
α.

�

From this is immediately deduced that,

LχvΩ =
[
Ω, dC|e(χ)

]
, Lχvϕ = −ρ∗

(
dC|e(χ)

)
ϕ, and Lχv Dϕ = −ρ∗

(
dC|e(χ)

)
Dϕ.

It suffices to pullback (46) on U ⊂ M to obtain the infinitesimal active gauge transformations of the local
representatives, counterparts of (24) and (25). Given χ := σ∗χ : U → LieH ∈ LieHloc, this gives

δχA = σ∗
(
Lχvω

)
= d

(
dCσ|e(χ)

)
+

[
A, dCσ|e(χ)

]
,

δχa = σ∗
(
Lχvα

)
= −ρ∗

(
dCσ|e(χ)

)
a.

(47)

Alternatively, these are obtained in a way analogous to the above proof, by defining δχA := d
dτ Aγτ

∣∣∣
τ=0 and δχa :=

d
dτ aγτ

∣∣∣
τ=0.

The infinitesimal versions of the gluing properties, proposition 6, are not related to the action of autv(P,H) '
LieH but are obtained by a completely analogous computation. On poses gτ(x) = eτλ(x), with λ : U → LieH, and
defines:

δλA := d
dτ A′

∣∣∣
τ=0 = d

(
dCσ|e(λ)

)
+

[
A, dCσ|e(λ)

]
,

δλa := d
dτ a′

∣∣∣
τ=0 = −ρ∗

(
dCσ|e(λ)

)
a.

(48)

And as usual, these passive infinitesimal gauge transformations are formally identical to the active ones, Eq.(47).

7.2 Mixed case

In the same spirit as in the above considerations, under the assumptions of section 6 we are interested in the in-
finitesimal counterpart of the mixed gauge transformations of the connection (34) and of C-tensorial forms (35). Let
us denote LieK :=

{
υ : P → K |R∗kυ = Adk−1υ

}
. It is isomorphic to autv(P,K) via the definition υv

p := d
dτ peτ υ(p)

∣∣∣
τ=0.

Elements of LieH and LieK also satisfy: R∗k χ = χ and R∗hυ = υ. We have then autv(P) = autv(P,H)⊕ autv(P,K) '
LieH ⊕ LieK , and ξv ∈ autv(P) s.t ξv = χv + υv is generated by ξ = χ + υ.

In preparation for the next proposition, consider that:

d
dτ C

(
eτχ

)
eτυ

∣∣∣
τ=0 = d

dτ C
(
eτχ

)
e
∣∣∣
τ=0 eK + eG

d
dτ eτυ

∣∣∣
τ=0 = dC|e(χ) + υ. (49)

Proposition 12. The infinitesimal mixed gauge transformations of the connection and C-tensorial forms are,

Lξvω = d
(
dC|e(χ) + υ

)
+

[
ω, dC|e(χ) + υ

]
= Lχvω + Lυvω,

Lξvα = −ρ∗
(
dC|e(χ) + υ

)
α = Lχvα + Lυvα.

(50)
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Proof. It goes exactly as in the proof of proposition 11, using proposition 9:

Lξvω := d
dτ (Φ ◦ Ξ)∗τ ω

∣∣∣
τ=0 = d

dτ
[
C

(
eτχ

)
eτυ

]−1 ω
[
C

(
eτχ

)
eτυ

]
+

[
C

(
eτχ

)
eτυ

]−1 d
[
C

(
eτχ

)
eτυ

] ∣∣∣
τ=0,

= − d
dτC

(
eτ χ

)
eτυ

∣∣∣
τ=0 ω + ω d

dτC
(
eτ χ

)
eτυ

∣∣∣
τ=0 + d d

dτC
(
eτ χ

)
eτυ

∣∣∣
τ=0.

The result follows from (49). Idem for α ∈ Ω•tens
(
P,C(H)oK

)
:

Lξvα := d
dτ (Φ ◦ Ξ)∗τ α

∣∣∣
τ=0 = d

dτ ρ
[
C

(
eτ χ

)
eτυ

]−1 α
∣∣∣
τ=0 = −ρ∗

[
d
dτC

(
eτ χ

)
eτυ

∣∣∣
τ=0

]
α.

�

The local version on U ⊂ M of this, the linear couterpart of (41)-(42), is obtained either by pullback or by
δA := d

dτ Aγτζτ
∣∣∣
τ=0 and δa := d

dτ aγτζτ
∣∣∣
τ=0. Either way, given υ := σ∗υ : U → LieK ∈ LieKloc, we get

δA = d
(
dCσ|e(χ) + υ

)
+

[
A, dCσ|e(χ) + υ

]
= δχA + δυA

δa = −ρ∗
(
dCσ|e(χ) + υ

)
a = δχa + δυa.

(51)

The linearised gluing properties, proposition 10, are obtained analogously. One poses `τ(x) = eτν(x), with
ν : U → LieK, and defines:

δA := d
dτ A′

∣∣∣
τ=0 = d

(
dCσ|e(λ) + ν

)
+

[
A, dCσ|e(λ) + ν

]
= δλA + δνA,

δa := d
dτ a′

∣∣∣
τ=0 = −ρ∗

(
dCσ|e(λ) + ν

)
a = δλa + δνa.

(52)

7.3 A word on BRST

The BRST formalism is widely used in physics as an efficient algebraic way to handle infinitesimal gauge trans-
formations. The BRST cohomology is rich, and allows notably to classify viable Lagrangian and gauge anomalies
(stemming from gauge symmetry breaking), [15; 16] . The geometric origin of its heuristic rules has been explored
by several authors, and the most satisfying view holds that it is grounded in the infinite dimensional analogue of
the Chevalley-Eilenberg construction [17] associated to the gauge group. The so-called ghost being essentially the
Maurer-Cartan form on H , while the BRST operator is the de Rham differential on the infinite dimensional group
manifold. See [18; 19]. Here we give the minimal BRST presentation reproducing the above linearised local active
gauge transformations.

One considers that all objects have a new grading in addition to the de Rham form degree, the so-called ghost
degree. The forms A, F, φ are attributed ghost degree 0, while χ and υ now stands for ghost fields2 and have ghost
degree 1. Let us denote for simplicity dCσ|e(χ) =: c(χ). The BRST differential, noted s, increases by one unit the
ghost number and is such that sd + ds = 0 and s2 = 0. So that (d + s)2 = 0. It acts as

sA = −dc(χ) − [A, c(χ)] , sF = [F, c(χ)] sφ = −ρ∗(c(χ))φ,

and sc(χ) = −1
2 [c(χ), c(χ)].

The last equality stems from requiring s2 = 0 on A, F or φ. In the mixed case, just replace c(χ) above by the total
ghost c(χ)+υ. It is clear by linearity that the total BRST operator splits accordingly as s = sχ+ sυ. The last equality
above in particular nicely encapsulates the relations sυυ = − 1

2 [υ,υ] and sχc(χ) = − 1
2 [c(χ), c(χ)] - ensuring that we

have BRST subalgebras for both sectors - as well as sχυ = 0 and sυc(χ) = −[c(χ),υ] which are the BRST versions
of the fourth equality (27) and of (33).

2Which are generic place holders for specific elements of LieH and LieK , i.e. they are the Maurer-Cartan forms onH andK respectively.
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8 Twisted Cartan connection

Cartan connections are ancestors to Ehresmann connections. Ehresmann gave them their first recognisably modern
definition while proposing his own generalisation (see [20] also [21] and reference therein). We refer to [22] and
[23] for modern in depth treatments of the subject.

Given a principal bundle P(M,H), and LieG′ ⊃ LieH, a Cartan connection is a differential 1-form $ ∈

Ω1(P,LieG′) enjoying the same two defining properties of an Ehresmann connection, $p(Xv
p) = X ∈ LieH and

R∗h$ph = Adh−1$p, but it is also required that $p : TpP → LieG′ be a linear isomorphism ∀p ∈ P. That is, the Car-
tan connection defines an absolute parallelism on P. This means that dimM = dim LieG′/LieH, and more precisely
that given the projection τ : LieG′ → LieG′/LieH, τ($) is a soldering form (whose local version induces a metric
structure onM if a bilinear form η : LieG′/LieH × LieG′/LieH → R is given). This is as well expressed by the fact
that the Cartan connection induces a soldering, i.e. an isomorphism of vector bundles : TM ' P×Ad(H) LieG′/LieH.
These facts make Cartan connections especially well suited to gauge theories of gravity.

The curvature is still given by Cartan’s structure equation Ω = d$ + 1
2 [$,$] ∈ Ω2

tens(P,LieG′), and Θ := τ(Ω)
is the torsion. Gauge transformations are given by the action of Autv(P,H) ' H , as it would for an Ehresmann
connection: $γ := Φ∗$ = γ−1$γ + γ−1dγ and Ωγ := Φ∗Ω = γ−1Ωγ.

Since Cartan connections can be seen as special cases of Ehresmann connections, and since twisted connections
are a particular generalisation of Ehresmann connections, we would like to define a special class of twisted con-
nections that would give an acceptable generalisation of Cartan connections. We might call these twisted Cartan
connections. There might be more than one clever way to define such a class. To emulate the desirable properties
of Cartan connections, especially regarding the gauge treatment of gravity, the following desiderata seem sufficient.

We consider again a principal bundle P(M,H) and a cocycle for the group action of H on P, C : P × H → G.
We demand that the twisted Cartan connection be $ ∈ Ω1(P,LieG′), where the Lie algebra LieG′ ⊃ LieG is such
that dim LieG′/LieG = dimM, and satisfies:

$p(Xv
p) = d

dτCp
(
eτX

) ∣∣∣
τ=0 = dCp|e(X) ∈ LieG, for X ∈ LieH, (I)

R∗h$ph = Cp(h)−1$p Cp(h) + Cp(h)−1dC(h)|p, (II)

ker$p = ∅, ∀p ∈ P, and LieG′/LieG ⊂ Im$p. (III)

Thus, the first two axioms are those of a twisted connection as originally defined, but the third is a weakened version
of the one satisfied by a Cartan connection: We only require that $ be an injection, not a linear isomorphism. Still,
it is sufficient to define a soldering.

Proposition 13. A twisted Cartan connection on P(M,H) induces a soldering, i.e. a vector bundle isomorphism
TM ' P ×AdC(H) LieG′/LieG.

Proof. Consider the following diagram

VpP Im$p ∩ LieG

TpP Im$p ∩ LieG′

TxM
Im$p ∩ LieG′/LieG

= LieG′/LieG

$p

'

$p

'

π∗
τ

The first columns is clearly a short exact sequences, and the second column is one also because of (III). The maps
in the two upper rows are isomorphisms due to (I) and (III), so there must be an isomorphism in in the bottom
row that makes the diagram commute. Such an isomorphism depends on p ∈ P and is given only up to the C-
twisted adjoint action of H. Indeed, denote βp : TxM → LieG′/LieG, and consider Xp ∈ TpP projecting as
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π∗Xp = Xx ∈ TxM. The commutativity of the bottom square means βp(Xx) = βp(π∗Xp) = τ ◦ $p(Xp). But also,
βph(Xx) = βph(π∗Rh∗Xp) = τ ◦$ph(Rh∗Xp) = τ ◦AdCp(h)−1$p(Xp) = AdCp(h)−1τ ◦$p(Xp) = AdCp(h)−1βp(Xx), where
(II) is used. Now, if one defines the map,

ι : P × LieG′/LieG → TM

(p, t ) 7→
(
π(p), β−1

p (t )
)
,

it appears that: ι
(
ph,AdCp(h)−1 t

)
=

(
π(ph), β−1

ph

(
AdCp(h)−1 t

))
=

(
π(p), β−1

p (t )
)

= ι(p, t ). Thus, we have actually a
bundle map ι : P ×AdC(H) LieG′/LieG → TM, which is a bundle equivalence because it covers the identity onM
and is an isomorphism of fibers. �

A corollary is that there is a bijective correspondance between vector fields X ∈ Γ(TM) and AdC(H)-equivariant
maps ϕ : P → LieG′/LieG.

Relatedly, it is clear that a twisted Cartan connection defines a soldering form θ := τ ◦$ ∈ Ω1(P,LieG′/LieG)
which is both horizontal and AdC(H)-equivariant: θ(Xv) = 0 and R∗hθ = AdC(h)−1θ. That is, the soldering form
is tensorial, θ ∈ Ω1

tens
(
P,C(H)

)
. Locally, on U ⊂ M endowed with a section σ, its pullback is e := σ∗θ ∈

Ω1(U,LieG′/LieG). Given a coordinate system {xµ} onU and a basis {ua} of LieG′/LieG, e = ea
µ dxµ ⊗ ua where

ea
µ is a vielbein field. If there is a symmetric non-degenerate bilinear form η : LieG′/LieG × LieG′/LieG → R, a

metric g : Γ(TU) × Γ(TU) → R is induced via g := η ◦ e. If η is AdG-invariant (possibly up to a non-vanishing
multiplicative factor), the local metric g extends to a (conformal) metric onM.

Let V be a (LieG′,G)-module, i.e. it supports an action of LieG′ via ρ′∗, and an action of G via ρ which is
such that ρ∗ = ρ′

∗|LieG. The space Ω•tens
(
P,C(H)

)
of V-valued twisted tensorial forms is defined as in section 3.3,

in particular their equivariance is R∗hα = ρ [C(h)]−1 α. The twisted Cartan connection, on account of (I) and (II),
induces an exterior covariant derivative on this space defined as usual by D := d + ρ′∗($).

The curvature of the twisted Cartan connection is again given by Ω = d$ + 1
2 [$,$] ∈ Ω2(P,LieG′), and the

torsion is Θ := τ(Ω). The curvature is a AdC(H)-tensorial form so D acts on it, but trivially so, which gives a Bianchi
identity: DΩ = dΩ + [$,Ω] = 0.

Gauge transformations are of course given by the action of Autv(P,H) ' H . On account of (I) and (II), the
twisted Cartan connection transforms as: $γ := Φ∗$ = C(γ)−1$C(γ) + C(γ)−1dC(γ). We already know that
for twisted tensorial forms αγ := Φ∗α = ρ

[
C(γ)

]−1 α. In particular, this gives the gauge transformations of the
curvature, the torsion and the soldering form: Ωγ = C(γ)−1Ω C(γ), Θγ = C(γ)−1Θ C(γ) and θγ = C(γ)−1θC(γ).

8.1 Mixed Cartan connection

The previous construction easily extends to the mixed case. Consider the principal bundle P(M,H × K) with a
cocycle C : P × H → G. A mixed Cartan connection is $ ∈ Ω1(P,LieG′), with LieG′ ⊃ Lie(GoK) such that
dim LieG′/Lie(GoK) = dimM, satisfying:

$p(Xv
p + Yv

p) = d
dτCp

(
eτX

) ∣∣∣
τ=0 + Y = dCp|e(X) + Y ∈ Lie(GoK), (I?)

R∗hk$p phk = R∗kh$p pkh = [Cp(h)k]−1$p [Cp(h)k] + [Cp(h)k]−1d[C(h)k]|p, (II?)

ker$p = ∅, ∀p ∈ P, and LieG′/Lie(GoK) ⊂ Im$p. (III?)

The first two axioms are those of a mixed connection, the third is a slightly extended version of the one satisfied
by a twisted Cartan connection and ensures that, mutadis mutandis, the result of Proposition 13 generalises as
TM ' P ×AdC(H)oK LieG′/Lie(GoK). As above, the projection τ : LieG′ → LieG′/Lie(GoK), allows to define the
soldering form θ ∈ Ω1(P,C(H)oK

)
. Given a (LieG′,G)-module V , the space Ω•tens

(
P,C(H)oK

)
of V-valued mixed

tensorial forms is defined as in section 6.1. A mixed Cartan connection, on account of (I?) and (II?), induces an
exterior covariant derivative D := d + ρ′∗($) on this space. The curvature Ω ∈ Ω2

tens
(
P,C(H)oK

)
satisfies Bianchi,

DΩ = 0, and the torsion is still Θ := τ(Ω). On account of (I?) and (II?), the gauge transformation of the mixed
Cartan connection under Autv(P) ' H ×K is, $γζ := Ψ∗$ = [C(γ)ζ]−1$ [C(γ)ζ] + [C(γ)ζ]−1d[C(γ)ζ]. For mixed
tensorial forms it is given by (35) of Proposition 9, which gives the gauge transformations of the curvature, the
torsion and the soldering form as special cases.
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8.2 Reductive and parabolic mixed Cartan geometries

Following a well established nomenclature for Cartan geometries [22; 23], we signal and briefly characterise two
notable classes of mixed Cartan geometries.

If there is an AdG- invariant decomposition LieG′= LieG +Vn, we call the mixed Cartan geometry reductive. In
this case, there is clean splitting of the mixed Cartan connection $ = ω + θ into a mixed connection ω and a mixed
soldering form θ. The curvature splits in the same way as the sum of the curvature of ω and the torsion, given by
Θ = dθ + [ω, θ].

If G′ is semi-simple and G is a parabolic subgroup corresponding to a |k|-grading of LieG′ =
⊕
−k≤i≤k

g′i , s.t.

[g′i , g
′
j] ⊂ g

′
i+j, the associated mixed Cartan geometry will be called parabolic. Both the mixed Cartan connection

and its curvature split along the |k|-grading.

9 Twisted gauge theories

Concerning applications of this twisted/mixed geometry to physics, the local representatives are to be regarded as
generalised gauge fields: They satisfy the gauge principle while being of a different geometric nature than standard
gauge fields. Given the usual ingredients, it is easy to come up with Lagrangian functionals that specify twisted
gauge theories in a way that exactly parallels the construction of Yang-Mills or gravity gauge theories.

To give prototypical examples, consider the Killing form on LieG or LieG′ - which, for special linear groups,
reduces to the trace operator, B(XY) = Tr(XY) for X,Y ∈ LieG(′). Suppose also that the representation maps ρ′∗, ρ of
the (LieG′,G)-module V are unitary for some bilinear form 〈 , 〉 on V . Finally, supposeM endowed with a metric
g, giving a Hodge operator ∗ : Ω•(M)→ Ωm−•(M). Then, one can write the gauge-invariant Lagrangian,

L(A, φ) = 1
2 Tr (F ∧ ∗F) + 〈Dφ, ∗Dφ〉 + U (〈φ, φ〉) ∗1,

where U is some potential. Or, if φ is a spinor (fermions), so that we note it ψ instead, we can write:

L(A, ψ) = 1
2 Tr (F ∧ ∗F) + 〈ψ, /Dψ〉 − m〈ψ, ∗ψ〉.

with /D = γ ∧ ∗D where γ = γa ea
µ dx µ = γµ dx µ is the Dirac gamma matrices-valued 1-form (with ea

µ the vielbein
associated to the metric g). It describes the dynamics of the twisted gauge potential A coupled to a twisted Dirac
field of mass m. Quite obviously, the field equations for A and ψ obtained from the action S (A, φ) =

∫
M

L(A, φ), are
respectively Yang-Mills’ equation sourced by ψ - D ∗ F = J(ψ) - and Dirac’s equation - ( /D − m)ψ = 0.

10 Applications: Conformal tractors, twistors, and anomalies in QFT

Tractors are sections of a n+2-dim real vector bundle over a conformal n-manifold (M, [g]), the tractor bundle T .
These sections have a special covariance under Weyl rescaling of the metric, that is under change of metric within
the conformal class. This bundle is endowed with a covariant derivative often called the tractor connection ∇T .
As a matter of fact,

(
T ,∇T

)
is the basis of a tractor calculus which is the analogue for conformal manifolds of the

tensorial calculus on (pseudo) Riemannian manifolds [24]. Recently, it has found some applications in physics,
especially General Relativity [25].

Twistors are sections of a 4-dim complex vector bundle over a conformal 4-manifold, the (local) twistor bundle
T. They have special covariance under Weyl rescaling, so T is endowed with a covariant derivative ∇T - the twistor
connection - and

(
T,∇T

)
is the basis of a twistorial calculus which is the analogue of spinorial calculus on (pseudo)

Riemannian manifolds [26; 27]. Penrose originally devised twistors with physics purpose in mind, and nowadays
they found renewed relevance in string theory and loop quantum gravity [28].

Twistors are the spin version of n = 4 tractors. Initially, and still in many standard presentations, both tractors
and twistors are constructed in a similar way: bottom-up, by prolongation of differential equations. Starting on
a conformal manifold, one defines the so-called Almost Einstein (AE) equation and twistor equation, which are
prolonged into closed linear systems. These are rewritten as linear operators acting on multiplets of variables (the
parallel tractors and global twistors respectively). The special covariance of these multiplets under Weyl rescaling
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is given by definition and commute with the action of their respective associated linear operators, which are thus
called tractor and twistor connections. The multiplets are interpreted as parallel sections of vector bundles, the
tractor and (local) twistor bundles. One can consult [24; 25] for the details of this procedure in the tractor case, and
the reference text [27] for the twistor case (or [29] where the case of paraconformal (PCF) manifolds is treated in a
very similar fashion).

The fact that T and T had a close relationship with the principal bundle of the conformal Cartan geometry
[22] did not go unnoticed [24; 30]. In the modern treatment of Cartan geometries, the term tractor assume a
broader meaning: Bundles associated to a Cartan geometry via a restriction of a representation of G′ ⊃ H are
termed tractor bundles, and for parabolic Cartan geometries the covariant derivatives on these bundles induced by a
Cartan connection are called tractor connections (see [23] sections 1.5.7 and 3.1.22). But then the original meaning
is only recovered via special sections of the underlying Cartan principal bundle known as Weyl structures ([23],
section 5.1). In the cases under consideration, the bottom-up procedure via prolongation described above has been
occasionally deemed more explicit [29], or more intuitive and direct [24] than the viewpoint in terms of vector
bundles associated to the conformal Cartan geometry. But this constructive approach requires a rather significant
amount of computation.

An alternative top-down approach is proposed in [31; 32] where T and T are explicitly constructed via gauge
symmetry reduction of the real and complex vector bundles naturally associated to the conformal Cartan geom-
etry, while ∇T and ∇T are shown to be induced by the reduced Cartan connection. This alternative constructive
procedure relies on a general scheme of gauge symmetry reduction known as the dressing field method [33]. It is
computationally more economical than the bottom-up approach via prolongation, and allows to generalise tractors
and twistors to manifolds with torsion. It preserves the insight of the more abstract modern treatment - by articu-
lating how T and T are associated to the conformal Cartan geometry - yet it is more user friendly.3 Finally, most
relevant for the present work, this method hints at the fact that tractors and twistors can be seen as simple, and
somewhat degenerated, examples of the twisted/mixed geometry elaborated above. This last point is elaborated in
the next two subsections.

After a third section where we comment briefly on conformal gravity, in a fourth and final subsection we show
how the twisted geometry arises naturally in the very definition of anomalies in quantum gauge field theory, and
therefore ought be relevant to their study.

10.1 The case of conformal tractors

Consider a conformal 4-manifold (M, [g]). A tractor is a map ϕ : U ⊂ M → R6, x 7→ ϕ(x) =

(
ρ
`
σ

)
with

` = `a ∈ R4, ρ ∈ R and σ ∈ R∗. The (generalised) tractor connection is $ =

( 0 P 0
e A Pt

0 et 0

)
, where A ∈ Ω1(U, so(1, 3)

)
,

e = ea
µdx µ ∈ Ω1(U,R4) is the soldering form, and P ∈ Ω1(U,R4∗). The operation |t is the transposition via the

Minkowski metric η. The tractor connection enters the definition of the tractor derivative Dϕ = dϕ + $ϕ. The

tractor curvature is Ω̄ =

(
f C 0
T W Ct

0 Tt − f

)
, where W ∈ Ω2(U, so(1, 3)

)
, T ∈ Ω2(U,R4) is the torsion, C ∈ Ω2(U,R4∗), and

f ∈ Ω2(U,R) is such that fab = P[ab].
If one imposes the conditions Ricc(W) := Wa

bac = 0 and T = 0, several consequences follow. First A is the
Lorentz/spin connection (expressed as a function of the components of e). Then f = 0 (by the Bianchi identify) and
P is the Schouten 1-form (with components the symmetric Schouten tensor). Finally, W and C are the Weyl and
Cotton 2-forms. In this case, $ is the standard tractor connection.

The (local) gauge group of Weyl rescalings is W :=
{
z : U ∈ M→ R+

∗

∣∣∣ zz′ = z′−1zz′ = z
}
. The Weyl gauge

transformations of the above variables are obtained via elements of the form

C(z) =

z Υ(z) z−1/2 Υ(z)Υ(z)t

0 1 z−1Υ(z)t

0 0 z−1

 , where Υ(z) = Υ(z)a := z−1∂µz e µa ∈ R
4∗. (53)

3For an explanation of the relation between the dressing fiel method and the notion of Weyl structure, one can consult appendix A in [34].
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We have indeed,

ϕz = C(z)−1ϕ, $z = C(z)−1$C(z) + C(z)−1dC(z),

(Dϕ)z = Dzϕz = C(z)−1Dϕ, Ω̄z = C(z)−1Ω̄ C(z).
(54)

It is easily verified that for z, z′ ∈ W one has C(z)z′ = C(z′)−1C(zz′) (because ez = ze), which is an instance of (23),
local version of the gauge transformation law of a cocycle (8). So that (54) is indeed a special case of (24)-(26),
local version of the gauge transformations of twisted fields as described in Proposition 3 and 4. We conclude that
tractor variables are indeed twisted gauge fields w.r.t. the Weyl gauge groupW.

The (local) Lorentz gauge group is SO :=
{
S =

(
1 0 0
0 S 0
0 0 1

)
, S : U → SO(1, 3)

∣∣∣ SS′ = S′−1SS′
}
. The Lorentz

gauge transformations of the tractor variables are,

ϕS = S−1ϕ, $S = S−1$S + S−1dS,

(Dϕ)S = DSϕS = S−1Dϕ, Ω̄S = S−1Ω̄ S.

Which means that they are standard gauge fields w.r.t. SO. By the way, it is easily verified that C(z)S = S−1C(z) S
(because eS = S −1e), which is a special case of (40), local version of (33). This ensures that the actions ofW and
SO on the tractor variables commute and that we have,

ϕ zS = [C(z)S]−1ϕ, $ zS = [C(z)S]−1$ [C(z)S] + [C(z)S]−1d[C(z)S],

(Dϕ) zS = D zSϕ zS = [C(z)S]−1Dϕ, Ω̄ zS = [C(z)S]−1Ω̄ [C(z)S],

that is a special case of (41)-(43), local version of the gauge transformations for mixed gauge fields as given in
Proposition 9. We conclude that tractor variables are mixed gauge fields w.r.t. the gauge groupW×SO.

From the above local construct we can attempt to recover the global twisted geometry that it stems from.
Consider the bundle P

(
M, W × SO(1, 3)

)
, with W := R+

∗ , as well as a cocycle map C : P × W → G where

the target group is defined as, G =

{(
1 r 1/2 rrt

0 1 rt

0 0 1

)
o

( z 0 0
0 1 0
0 0 z−1

)
=

(
z r z−1/2 rrt

0 1 z−1rt

0 0 z−1

) ∣∣∣ r ∈ R4∗, z ∈ W
}

. For z ∈ W, the lo-

cal cocycle (53) is a map C(z) : U → G. Consider also the (inner) semidirect product group G o SO :={(
z r z−1/2 rrt

0 1 z−1rt

0 0 z−1

)
o

(
1 0 0
0 S 0
0 0 1

)
=

(
z rS z−1/2 rrt

0 S z−1rt

0 0 z−1

) ∣∣∣ S ∈ SO(1, 3)
}

, where the group morphism SO→ Aut(G) defining the semidi-

rect structure is S 7→ Conj(S ). Its Lie algebra is Lie(G o SO) =

{(
ε ι 0
0 s ιt

0 0 −ε

) ∣∣∣ ε ∈ R+
∗ , s ∈ so(1, 3), ι ∈ R4∗

}
. Clearly,

the tractor connection takes value in the bigger Lie algebra LieG′ = Lie(G o S O) ⊕ R4 =

{(
ε ι 0
τ s ιt

0 τt −ε

) ∣∣∣ τ ∈ R4
}
,

and dim LieG′/Lie(GoSO) = dimM. Therefore, it appears that the tractor connection $ is a local mixed Car-
tan connection as defined in section 8.1. By the way, there is a decomposition of LieG′ that shows it is graded:

LieG′ = g′
−1 + g′0 + g′1 =

{(
0 0 0
τ 0 0
0 τt 0

)
+

(
ε 0 0
0 s 0
0 0 −ε

)
+

(
0 ι 0
0 0 ιt

0 0 0

) ∣∣∣ . . .}, [g′i , g
′
j] ∈ g

′
i+ j, and Lie(G o SO) = g′0 + g′1 is a parabolic

subalgebra. So tractor geometry is an instance of parabolic mixed Cartan geometry. In particular the tractor bundle
is a mixed vector bundle associated to P, T = P ×C(W)oSO R

6, as defined in section 6.1.
Notice however that, in view of (53), the P-dependance of the cocycle map C : P × W → G is localised

in the coefficients of the soldering form (ea
µ) in the definition of Υ(z), which also contains a derivative of z. So,

for constant z ∈ W the P-dependance vanishes, and the cocycle reduces to a group morphism C : W → G,

z 7→ C(z) =

( z 0 0
0 1 0
0 0 z−1

)
. Then, at the level of W × SO-equivariance, the W-twisted side of tractor geometry seems to

degenerate into a standard non-twisted case. Only at the level ofW × SO-action/gauge transformations does the
cocycle structure, and theW-twisted geometry, is manifest. Because of this, the fact that tractors are mixed gauge
fields and provide an instance of a new type of geometry might go unnoticed.4 The same goes for twistors, as we
now show.

4From a physicist’s point of view it is clear that something unusual is going on, because gauge elements C(z) of type (53) clearly cannot
come from the mere gauging of a Lie group.
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10.2 The case of local twistors

We follow closely the treatment given in the previous section. But first, let us start by reminding some basic results
and fix our notations.

Denote Minkowski space by M := (R4, η), and consider
{
σAA′

a

}
a=0,...,3

, a basis of 2 × 2 hermitian matrices
Herm(2,C) = {M ∈ M2(C) | M∗ = M}, where ∗ denote Hermitian transposition. There is a vector space isomor-

phism M → Herm(2,C), x = xa 7→ x̄ = x̄AA′ := xaσAA′
a = 1

2

(
x0+x3 x1−ix2

x1+ix2 x0−x3

)
. Upper case Latin letters are Weyl spinor

indices, with values 0 and 1. The spacetime interval is then given by xTηx = 4 det(x̄). The isomorphism for the dual

is R4∗ → Herm(2,C), r = xt = xTη 7→ r̄ := x0σ0 − xiσi = 1
2

(
x0−x3 −x1+ix2

−x1−ix2 x0+x3

)
.

Correspondingly, we have the double cover group morphism SL(2,C) → SO(1, 3), ±S̄ 7→ S . It is a spin
representation of the Lorentz group. So the action SO(1, 3) × M → M, (S , x) 7→ S x preserving η, is represented
by the action SL(2,C) × Herm(2,C) → Herm(2,C), (S̄ , x̄) 7→ S̄ x̄S̄ ∗ preserving det. The associated Lie algebra
isomorphism sl(2,C)→ so(1, 3), s̄ 7→ s, implies that the action so(1, 3)×M→ M, (s, x) 7→ sx, is represented by the
action sl(2,C) × Herm(2,C)→ Herm(2,C), (s̄, x̄) 7→ s̄x̄ + x̄s̄∗.

On a conformal 4-manifoldM, a (local) twistor is a map ψ : U ⊂ M → C4, x 7→ ψ(x) = ( πω ) with π, ω ∈ C2

dual Weyl spinors. The (generalised) twistor connection is $̄ =
(
−Ā∗ −i P̄
i ē Ā

)
, with Ā ∈ Ω1(U, sl(2,C)

)
and ē, P̄ ∈

Ω1(U,Herm(2,C)
)
. It enters the definition of the twistor derivative (or twistor transport), D̄ := d + $̄. The twistor

curvature is Ω̄ =

(
−W̄∗+ f/212 −i C̄

i T̄ W̄− f/212

)
, with W̄ ∈ Ω2(U, sl(2,C)

)
, T̄, C̄ ∈ Ω2(U,Herm(2,C)

)
, and f ∈ Ω2(U,R). Here

again, imposing Ricc(W̄) = 0 and T̄ = 0 implies that Ā is the spin connection, f = 0, and P̄, C̄, W̄ are the Schouten,
Cotton and Weyl tensors. So that $̄ is the standard twistor connection.

The (local) Weyl gauge transformations of these twistor variables are obtained via elements of type

C̄(z) =

(
z1/2 −i z−1/2 Ῡ(z)
0 z−1/2

)
, where Ῡ(z) = Υ(z)AA′ ∈ Herm(2,C), (55)

so that,

ψz = C̄(z)−1ψ, $̄z = C̄(z)−1$̄ C̄(z) + C̄(z)−1dC̄(z),

(D̄ψ)z = D̄zψz = C̄(z)−1D̄ψ, Ω̄z = C̄(z)−1Ω̄ C̄(z).
(56)

One verifies again that given z, z′ ∈ W, one has C̄(z)z′ = C̄(z′)−1C̄(zz′), as instance of (23) and a local version of
(8). It follows that (56) is a special case of (24) -(26), local versions of Propositions 3 and 4. Twistor variables are
therefore twisted gauge fields w.r.t. the Weyl gauge groupW.

The (local) spin gauge group is SL :=
{
S̄ =

(
S̄ −1∗ 0

0 S̄

)
, S̄ : U → SL(2,C)

∣∣∣ S̄S̄′ = S̄
′−1S̄S̄′

}
. The spin gauge

transformations of the twistor variables are,

ψS̄ = S̄−1ψ, $̄S̄ = S̄−1$̄ S̄ + S̄−1dS̄,

(D̄ψ)S̄ = DS̄ψS̄ = S̄−1D̄ψ, Ω̄S̄ = S̄−1Ω̄ S̄.

so they are standard gauge fields w.r.t. SL. Also, one verifies that C̄(z)S̄ = S̄−1C̄(z) S̄, a special case of (40) and a
local version of (33). So the actions ofW and SO on the twistor variables commute and we have,

ψ zS̄ = [C̄(z)S̄]−1ψ, $̄ zS̄ = [C̄(z)S̄]−1$̄ [C̄(z)S̄] + [C̄(z)S̄]−1d[C̄(z)S̄],

(D̄ψ) zS̄ = D̄ zS̄ψ zS̄ = [C̄(z)S̄]−1D̄ψ, Ω̄ zS̄ = [C̄(z)S̄]−1Ω̄ [C̄(z)S̄],

as special case of (41)-(43) and local version of Proposition 9. Thus, like tractors, twistor variables are mixed gauge
fields w.r.t. the gauge groupW×SL.

Again, we can guess the global twisted geometry from the local data. Consider the bundle P
(
M, W ×SL(2,C)

)
,

and a cocycle C : P × W → Ḡ where Ḡ =
{(
1 −i r̄
0 1

)
o

(
z1/2 0
0 z−1/2

)
=

(
z1/2 −i z−1/2 r̄
0 z−1/2

) ∣∣∣ r̄ ∈ Herm(2,C), z ∈ W
}
. For z ∈
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W, the local cocycle (55) is a map C̄(z) : U → Ḡ. Consider also the semidirect product group Ḡ o SL :={(
z1/2 −i z−1/2 r̄
0 z−1/2

)
o

(
S̄ −1∗ 0

0 S̄

)
=

(
z1/2S̄ −1∗ −i z−1/2 r̄S̄

0 z−1/2S̄

) ∣∣∣ S̄ ∈ SL(2,C)
}
, where the group morphism SL → Aut(Ḡ) of the semidi-

rect structure is S̄ 7→ Conj(S̄ ). Its Lie algebra is Lie(ḠoSL) =
{(
−(s̄−ε/21)∗ −i ῑ

0 s̄−ε/21

) ∣∣∣ ε ∈ R+
∗ , s ∈ sl(2,C), ῑ ∈ Herm(2,C)

}
.

The twistor connection manifestly takes value in a bigger Lie algebra, LieḠ′ = Lie(Ḡ o S L) ⊕ Herm(2,C) ={(
−(s̄−ε/21)∗ −i ῑ

i τ̄ s̄−ε/21

) ∣∣∣ τ̄ ∈ Herm(2,C)
}
, and dim LieḠ′/Lie(ḠoSL) = dimM. Therefore, the twistor connection $̄ is

a local mixed Cartan connection. Obviously, like its real counterpart, LieḠ′ is graded: LieḠ′ = ḡ′
−1 + ḡ′0 + ḡ′1 ={(

0 0
−i τ̄ 0

)
+

(
−(s̄−ε/21)∗ 0

0 s̄−ε/21

)
+

(
0 −i ῑ
0 0

) ∣∣∣ . . .}, [ḡ′i , ḡ
′
j] ∈ ḡ

′
i+ j, with Lie(Ḡ o SL) = ḡ′0 + ḡ′1 a parabolic subalgebra. So,

twistor geometry is an instance of parabolic mixed Cartan geometry, and the twistor bundle is a mixed vector bundle
T = P ×C̄(W)oSL C

4.
Notice again that, as in the tractor case, given (53), the P-dependance of the cocycle map C̄ : P × W → Ḡ

comes from the coefficients of the soldering form (ea
µ) entering the definition of Ῡ(z), containing a derivative of z.

For constant z ∈ W the cocycle then reduces to a group morphism C̄ : W → Ḡ, z 7→ C̄(z) =
(

z1/21 0
0 z−1/21

)
. Again,

at the level of W × SO-equivariance the W-twisted side of twistor geometry is degenerated, and only at the level of
W×SO-gauge transformations does the cocycle structure and theW-twisted geometry are manifest.

10.3 Conformal gravity as a twisted gauge theory

An attempt to interpret local twistors and the twistor covariant derivative as gauge fields in the spirit of Yang-Mills
theory, compatible with the gauge principle of field theory, was first proposed in [35]. This work is cited in the
reference text of Penrose and Rindler [27].5 From the above considerations, it appears clearly that actually twistors
better fit in the generalised geometry developed in this paper, and are therefore not Yang-Mills gauge fields, but
rather twisted/mixed gauge fields - that indeed provide a new satisfying instantiation of the gauge principle.

It was further shown in [35] that the Yang-Mills equation for the twistor connection $̄ reproduces the Bach
equation of conformal (or Weyl) gravity, and that upon examination, the Yang-Mills type Lagrangian for $̄ is
indeed the Weyl tensor-squared Lagrangian of conformal gravity.

This is most clearly understood in the context of Section 9. First, define the Killing forms B̄ and B on LieḠ′

and LieG′. Given M̄, N̄ ∈ LieḠ′, B̄(M̄, N̄) := 1
2

(
Tr(M̄N̄) + Tr(N̄∗M̄∗)

)
. Given M,N ∈ LieG′, B(M,N) := Tr(MN).

The same formulae hold for sl(2,C) and so(1, 3) and define B̄sl(2,C) and Bso(1,3), which must coincide since sl(2,C) '
so(1, 3). As a matter of fact, for m, n 7→ m̄, n̄ one has B̄sl(2,C)(m̄, n̄) = Bso(1,3)(m, n). The Yang-Mills Lagrangians
associated to the standard tractor and twistor connections both reproduce conformal gravity,

LYM($) = 1
2 B(Ω, ∗Ω) = 1

2 Bso(1,3)(W, ∗W)

LYM($̄) = 1
4 B̄(Ω̄, ∗Ω̄) = 1

2 B̄sl(2,C)(W̄, ∗W̄)

 = 1
2 Tr(W ∧ ∗W) = LWeyl(e).

It is then no surprise that the field equations obtained by varying the action SYM($̄) w.r.t. $̄, or SYM($) w.r.t. $,
on the one hand, and by varying the action SWeyl(e) w.r.t. e on the other hand, should coincide. In the first case we
obtain the Yang-Mills equations for the standard tractor and twistor connections, and in the second case we obtain
the Bach equation:

δSYM($̄)
δ$̄ = 0 → D̄ ∗ Ω̄ = 0 δSYM($)

δ$ = 0 → D ∗Ω = 0

δSWeyl(e)
δe = 0 → Bab = 0

where Bab is the Bach tensor. The equivalence on the right side of the diagram was first noticed in [36]. From this
we conclude that conformal gravity is a mixedW×SO -gauge theory hiding in plain sight.

5The footnote p.133 reads, “Local twistors [...] can under certain circonstances be thought of as defining a kind of Yang-Mills theory, cf
Merkulov (1984)(Bach tensor current).”.
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10.4 Application to anomalies in QFT

Anomalies arise in QFT when the quantization of a classical gauge theory fails to uphold the gauge invariance.
First discovered through perturbative methods, (consistent) anomalies were found to be characterized by BRST
cohomological methods and obtainable via Stora-Zumino descent equations. They finally came to be understood
as degree 1 elements in the cohomology of LieH [18], and soon after as H-1-cocycles [37; 38], see in particular
[39]. Interestingly, in [39] and [40; 41], an infinite dimensional twisted line bundle appears as a relevant object in
the study of anomalies (see also [42; 43], or [44] more recently). It comes out as follows.

Consider a Yang-Mills gauge theory such that the relevant fields space is the spaceA of Ehresmann connections
of a H-principal bundle P with gauge groupH . Under proper restrictions,A is itself aH-principal bundle over the
moduli spaceA/H , where one is here in the realm of infinite dimensional Hilbert manifolds [45; 46].

A quantum (vacuum) functional is a smooth map W : A→ C∗. For a gauge invariant quantized theory, W is s.t.
W(Aγ)=W(A), γ ∈ H , it is therefore projectable and descends to a functional on the baseA/H . But an anomalous
functional is s.t. W(Aγ) = C(A, γ)−1W(A), where C : A×H → U(1) is C(A, γ) = exp{−i2π f (A, γ)}. The functional
in the phase is the Wess-Zumino term, also called integrated anomaly since indeed lim

τ→0
f (A, γτ)/τ = a(χ, A) is the

anomaly (linear in χ ∈ LieH).
Now, consistency of the right action of the gauge group W(Aγγ

′

) = W((Aγ)γ
′

) implies the cocycle relation
C(A, γγ′) = C(A, γ) C(Aγ, γ′), which is a form of the Wess-Zumino consistency condition for the gauge anomaly.
An anomalous quantum functional W is then a twisted C-equivariant function on A, i.e. a section of the twisted
associated line bundle LC := A×C(H) C

∗.

As far as I can tell, the peculiar geometrical nature of twisted line bundles likeLC was first stressed in [47; 48].6

These references also introduce a connection for a twisted line bundle LC := P×C(H) C
∗ associated to a H-principal

bundle P, with C : P × H → C∗, that turns out to be a special case of twisted connection defined in section 3.2.
Working on a patch U ⊂ M, consider a map u : π−1(U) ⊂ P → H defined by the equivariance property

R∗hu = h−1u.7 This we call a - locally defined - dressing field [33]. The map C(u) : π−1(U) → H, is such that
Cph(u(ph)) = Cph(h−1u(p)) = Cph(h−1) Cp(u(p)) = Cp(h)−1Cp(u(p)). So its equivariance is R∗hC(u) = C(h)−1C(u)
(call it a twisted dressing field, see [31; 32; 34]). Build then the 1-form Γ := C(u)dC(u)−1 satisfying, for Xv

p ∈ VpP

generated by X ∈ LieH,

Γp(Xv
p) = Cp(u(p))dC(u)−1

p (Xv
p) = Cp(u(p))[Xv(C(u))]−1(p) = Cp(u(p)) d

dτCpeτX

(
u(peτX)

)−1 ∣∣∣
τ=0,

= d
dτCp

(
eτX

) ∣∣∣
τ=0 = dCp|e(X),

and, for h ∈ H and Xp ∈ TpP,

R∗hΓph = Cph(u(ph))dR∗hC(u)|p = Cp(h)−1Cp(u(p)) d
(
C(u)−1C(h)

)
|p
,

= Cp(h)−1ΓpCp(h) + Cp(h)−1dC(h)|p.

Thus, Γ ∈ C(P|U)T . Given a partition of unity {δi} subordinate to a covering {Ui} ofM, the Γi’s can be glued into
a non flat twisted connection Γ =

∑
(π∗δi)Γi ∈ C(P)T , with curvature Ω = dΓ ∈ Ω2

tens(P,C). It defines a covariant
derivative D = d + Γ on Ω•tens(P,C), and on sections of LC in particular.

Applied to the case P ⇒ A and LC ⇒ LC ,we see that the twisted connection Γ is given essentially by the
Wess-Zumino term f (A, γ).

6In the introduction of the latter reference we read, “[...] recently objects (called generalized associated bundles hereafter) have appeared
in the physics literature, about whose general structure little seems to be known”. And after defining the twisted line bundle with fiber C
we find, just below Eq.(2.3), the comment “bundles of this kind have recently appeared in the physics literature (mainly in relation with
anomalies). Their geometrical structure, however, was not further investigated.” The present paper happens to contribute to this investigation.

7Such a map always exists on a trivial bundle, here the bundle P|U = U × H.
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11 Conclusion

In this paper, we have constructed a geometry that generalises associated vector bundles E built via representa-
tions (ρ,V) of the structure group H of a principal bundle P(M,H). These generalised associated bundles EC are
built from cocycles for the action of the structure group on the principal bundle, C : P × H → G, and represen-
tations (ρ,V) of the target group G instead of H. We therefore call these - unimaginatively - twisted associated
bundles. We have also characterised the space of V-valued twisted tensorial forms Ω•tens

(
P,C(H)

)
, whose subspace

of degree 0 is isomorphic with the space Γ(EC) of sections of twisted bundles. We have then defined a notion of
twisted connection form onP that generalises Ehresmann connection 1-forms in providing a good exterior covariant
derivative on Ω•tens

(
P,C(H)

)
- thus allowing to define a parallel transport on Γ(EC) - and whose curvature belongs

to Ω2
tens

(
P,C(H)

)
. As usual, the gauge transformations of the twisted connections and tensorial forms are obtained

from the action of vertical automorphisms, Autv
(
P,H

)
, of the principal bundle. These geometrical objects provide

a new way to implement the gauge principle of physics, so that the local representatives on M can be seen as
twisted gauge fields generalising Yang-Mills type gauge fields. The possibility of building twisted gauge theories
straightforwardly ensue.

As the most immediate extension of this new framework, we have considered the case of bundles associated to,
and tensorial forms on, a principal bundle P(M,H × K), which behave as twisted objects w.r.t. the action of H, but
as standard objects w.r.t. the action of K. For this reason we call them respectively mixed associated bundles EC

and mixed tensorial forms Ω•tens
(
P,C(H)oK

)
. We then defined a corresponding notion of mixed connection, which

is both a H-twisted connection and a K-standard (Ehresmann) connection. It induces a good covariant derivative on
Ω•tens

(
P,C(H)oK

)
and Γ(EC), and its curvature is mixed tensorial.

In the same way that Cartan connection 1-forms are a distinguished subclass of Ehresmann connection 1-forms,
we have proposed a definition for a subclass of our twisted/mixed connections that may be a sensible generalisation
of Cartan connections. We then call these twisted/mixed Cartan connections.

To convince ourselves that all this is not idle exploration, we have shown that conformal tractors and local
twistors can be seen as simple and slightly degenerate instances of the general framework presented here. The
tractor and twistor bundles are mixed vector bundles, while the tractor and twistor connections are mixed Cartan
connections. This clarifies and puts on firmer mathematical ground the attempt [35] to interpret local twistors
as gauge fields of a kind: they are indeed mixed gauge fields as defined here. We are then led to the surprising
conclusion that conformal gravity is an unsuspected example of twisted/mixed gauge theory.

At least one other example could have been added to the list: projective tractors. Like conformal tractors,
these can be constructed bottom-up via prolongation [24], but they can also be more economically obtained via the
dressing field method [33]. In the latter case, the twisted structure is more readily and explicitly seen. We refrained
from presenting this case because it would have added little to the discussion and we wanted to spare the reader an
elaboration that might have felt repetitive.

Keen readers will perhaps have noted that twisted objects can be related to standard constructions by “hiding”
the cocycle structure. One can indeed build the twisted associated bundle Q = P ×C(H) G, which is a G-principal
bundle under the right action of G on itself. One can show that the standard associated bundle Q×G V is isomorphic
to the twisted bundle P ×C(H) V , and that a twisted connection on P induces an Ehresmann connection on Q (and
vice-versa). In our view this interesting fact does not imply that the twisted geometry described here isn’t worthy of
further study. No more than the well-known fact that LieG-valued Cartan connections on some H-principal bundle
P induce Ehresmann connections on the G-principal associated bundle Q = P ×H G (and vice-versa8, see e.g. [22]
Appendix A, §3.) means that Cartan geometry isn’t a worthy subject in its own right.

One might therefore be interested in further developing and understanding the twisted/mixed geometry, so as to
e.g. see how standard notions such as holonomy, characteristic classes, Chern-Weyl theory, etc... export to this new
context. And further still, one may want to examine how this framework extends to the super-differential geometric
setup, eyeing possible applications to physics and supergravity.

The relevance of the twisted geometry is perhaps especially easy to argue for in view of the application to
physics we have already hinted at: Cocycles in the form of Wess-Zumino terms appear most naturally in the study
of anomalous quantum functionals on the H-bundle A of Ehresmann connections of a H-principal bundle P.

8Provided that the Ehresmann connection ω satisfies kerω ∩ φ∗TP = ∅, with the bundle map φ : P → Q.
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These are C-equivariant functionals, i.e. section of a line twisted bundle associated to A. The natural covariant
differentiation of such functionals would require to endowA with a twisted connection, perhaps more general than
the one defined by the cocycle/Wess-Zumino term introduced in [47; 48]. The twisted geometry may also prove
useful in relation to works on boundaries in gauge theories. For example, in [49] so-called field dependent gauge
transformations are introduced that could perhaps be better understood as H-valued cocycles (C : A × H → H),
and A is endowed with a connection that might be interpreted as a twisted connection: if their “field dependent
gauge transformation” g is indeed seen as a cocycle, compare equations (3.9a)-(3.10)/(3.9b) with (I)-(II)/(46).

Finally, let us notice that a priori twisted/mixed gauge theories can be quantized following the same strategies
used for standard gauge theories. There seems to be no objections to using path integration methods, and we have
seen that the BRST framework is general enough to accommodate our new geometric objects. It is also conceivable
to attempt canonical quantization, after all this is what Penrose proposed for twistors (see e.g. twistor quantization
on p.142 of [27] and references therein).

However a new layer of complexity may appear here. Indeed, the gauge transformations of our new gauge fields
are twisted by cocycles. Up until now, we did not articulate what is the equivalence relation on these cocycles and
how is defined the associated cohomology. What, if anything, does this cohomology add to the gauge structure of
mixed gauge fields? How does it interact with the usual gauge-BRST cohomology familiar in gauge theory? How
does it relate to the quantisation problem, and are there e.g. new kind of anomalies associated to it? These intriguing
questions seem worthy of further investigation.
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